
J .  Fluid Mech. (1991), vol. 224, p p .  42-84 
Printed in Great Britain 

429 

The multifractal nature of turbulent energy 
dissipation 

By CHARLES MENEVEAUt AND K. R. SREENIVASAN 
Mason Laboratory, Yale University, New Haven, CT 06520, USA 

(Received 2 January 1990 and in revised form 19 July 1990) 

The intermittency of the rate of turbulent energy dissipation E is investigated 
experimentally, with special emphasis on its scale-similar facets. This is done using 
a general formulation in terms of multifractals, and by interpreting measurements in 
that light. The concept of multiplicative processes in turbulence is (heuristically) 
shown to lead to multifractal distributions, whose formalism is described in some 
detail. To prepare proper ground for the interpretation of experimental results, a 
variety of cascade models is reviewed and their physical contents are analysed 
qualitatively. Point-probe measurements of e are made in several laboratory flows 
and in the atmospheric surface layer, using Taylor’s frozen-flow hypothesis. The 
multifractal spectrum f(a) of E is measured using different averaging techniques, and 
the results are shown to be in essential agreement among themselves and with our 
earlier ones. Also, long data sets obtained in two laboratory flows are used to obtain 
the latent part of thef(a) curve, confirming Mandelbrot’s idea that it can in principle 
be obtained from linear cuts through a three-dimensional distribution. The tails of 
distributions of box-averaged dissipation are found to  be of the square-root 
exponential type, and the implications of this finding for the f(a) distribution arc 
discussed. A comparison of the results to  a variety of cascade models shows that 
binomial models give the simplest possible mechanism that reproduces most of the 
observations. Generalizations to  multinomial models are discussed. 

1. Introduction 
It has long been known (Batchelor & Townsend 1949) that  small scales of 

turbulence are intermittent. The small-scale quantity that has received most 
attention is the rate of dissipation of kinetic energy, E .  Figures 1 (a )  and 1 ( b )  show 
experimental signals of a representative component of E obtained respectively in a 
laboratory boundary layer and in the atmospheric surface layer. They illustrate the 
intermittent nature of E and emphasize that it becomes increasingly conspicuous with 
increasing flow Reynolds number. 

A conceptually appealing view, dating back to Obukhov (1962) and Kolmogorov 
(1962), visualizes the transfer of kinetic energy to the small scales as a self-similar 
cascade with an associated multiplicative process. This view is still a t  the heart of 
many phenomenological intermittency models. Based on the central-limit theorem, 
Kolmogorov (1962) and Obukhov (1962) proposed a lognormal distribution of the 
rate of dissipation (see also Yaglom 1966 and Gurvich & Yaglom 1967), while 
Novikov (1971) and Mandelbrot (1972) clarified inherent problems of the lognomal 
model. Another type of multiplicative intermittency model was proposed by 
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i or x 
FIQURE 1 .  Typical signals of a representative component of E ,  namely E’ - (du,/dt)’ normalized by 
the mean : (a) was obtained in a laboratory boundary layer at a moderate Reynold number, and 
(b) in the atmospheric surface layer at a high Reynolds number. For a description of the 
experimental conditions, see $3.1 and table 1 .  

Novikov & Stewart (1964) and further generalized by Novikov (1969, 1971, 1990). 
Mandelbrot (1974) introduced the general cascade model of random curdling and 
interpreted the NovikovStewart model geometrically using notions of fractal 
geometry. More detailed physical and geometrical implications of this type of model 
were analysed by Frisch, Sulem & Nelkin (1978), who coined for their specific version 
the name P-model. Kraichnan (1974) used a cascade model similar to random 
curdling (but with a spatially less explicit structure) expressed in terms of band- 
limited velocity fluctuations. For a general analysis of the physical content of the 
ideas behind self-similar cascades, see Kraichnan (1974) and Nelkin (1989). 

Of particular interest in Mandelbrot’s (1974) analysis is the prediction that certain 
high-order moments computed from point-probe measurements will diverge a t  high 
Reynolds numbers. Schertzer & Lovejoy (1985) analysed data from atmospheric 
turbulence, with special emphasis on this prediction, and concluded that i t  is correct. 
They also proposed a model exhibiting such a behaviour (see also the review article 
by Levich 1987). Laboratory measurements, however, have not confirmed the 
prediction on the divergence of high-order moments (Anselmet et al. 1984; Gagne 
1987). 

In  a parallel development that was silent on multistage cascades, different models 
for the geometry of dissipative structures were proposed in terms of sheets (Corrsin 
1962) and tubes (Tennekes 1968). An ambitious but incomplete experimental 
investigation by Kuo & Corrsin (1972) suggested that the structure was somewhat 
more filament-like rather than blob-like or slab-like. A summary and discussion of 
these models, as well as a treatment of the fine structure via the application of the 
Hilbert transform, was given by Sreenivasan (1985). Numerical simulations using 
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vortex methods (Chorin 1982) have confirmed the intermittent nature of turbulence 
activity and demonstrated the usefulness of fractal geometry in describing i t .  
Interesting analogies with critical phenomena and polymer dynamics have been 
explored (Nelkin 1973; Mori 1980; Hentschel & Procaccia 1982; Chorin 1988a, b ) .  
Furthermore, Mori (1980) highlighted interesting connections between fractals and 
local expansion rates in the context of turbulence. 

From an experimental point of view, little attention was given to Mandelbrot’s 
general model of random curdling until recently. Numerous measurements of 
intermittency were made (e.g. Gibson, Stegen & Connelll970; Tennekes & Wyngaard 
1972; Frenkiel & Klebanoff 1975; McConnell 1976; Park 1976; Van Atta & Antonia 
1980, to name but a few), and compared to either the lognormal or the /3-model 
hypotheses. The inadequacy of lognormal models for high-order moments was 
demonstrated by Sreenivasan, Antonia & Danh (1977), and the high-order velocity 
structure function measurements of Anselmet et al. (1984) made it  clear that  both 
lognormal and /3-models were inadequate. 

To account for the observations, Frisch & Parisi (1985) introduced the idea of 
distributions of singularities, all lying on interwoven sets of varying fractal 
dimensions, and coined the name multifractal. They related such a description to the 
hierarchy of moment exponents originally proposed by Mandelbrot ( 1974) to  
characterize his random curdling model. This was advanced further by Benzi et al. 
(1984) who introduced the so-called random /3-model and proposed its application to 
measures created on strange attractors in phase space. A similar path was taken by 
Hentschel & Procaccia (1983) who introduced the hierarchy of the so-called 
‘generalized dimensions ’ D,, and Halsey et al. (1986), who coined the namef(a) for the 
set of fractal dimensions characterizing multifractals. Mandelbrot (1989) has further 
clarified some properties off(a) in terms of his earlier work of 1974. In  fact, much of 
Novikov’s early work can, with hindsight, be cast in terms of multifractals. 

We feel that  the theory of multifractals has acquired a certain maturity at this 
point, permitting an intuitive understanding of multiplicative processes and of the 
intermittent distributions in turbulence. This feeling is due, in part, to the number 
of applications in physical sciences where multifractals and multiplicative processes 
have been found useful (see e.g. Paladin & Vulpiani 1987). I n  part, i t  is based on 
measurements on the multifractal nature of dissipation fields in turbulent flows 
(Meneveau & Sreenivasan 1987 a, 1989 ; Sreenivasan & Meneveau 1986,1988 ; Prasad, 
Meneveau & Sreenivasan 1988 ; Ramshankar 1988 ; Meneveau 1989). We therefore 
think that it is worthwhile consolidating results relating to the multifractal nature 
of E .  With this in view, this paper expands some of the earlier work, and provides a 
careful account of the measurements. It reviews previous cascade models in a unified 
fashion and examines them in the context of multifractality. Finally, it presents a 
detailed analysis of the behaviour of high-order moments of E ,  and its implications 
for the observed intermittency . 

The present measurements were made by stationary single-wire probes. Several 
flows studied here were created in the laboratory at moderate Reynolds numbers ; the 
scaling range was limited but high-order moments could be measured accurately 
because of guaranteed statistical convergence. We also made measurements in the 
atmospheric surface layer for which the scaling range is large but high-order 
moments cannot be obtained accurately (because the data records required would be 
so long as to preclude stationary conditions). The focus will be on the scaling 
behaviour of the dissipation integrated over ‘volumes’ of sizes pertaining to  the 
inertial range. As noted by Kraichnan (1974), such a variable is in itself not an 
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inertial range quantity and need not follow the self-similar behaviour expected in the 
inertial range. It is therefore of considerable interest to explore whether such a 
variable does indeed exhibit self-similar behaviour and, if so, its relationship with 
other scaling exponents of the inertial range. 

The paper is structured as follows. Section 2 provides an introduction to 
multiplicative processes. It includes basic definitions of multiplicative processes 
($2.1), early cascade models ($2.2), the characterization of multifractals by 
singularity spectra and generalized dimensions ($ 2.3), Mandelbrot’s formalism of 
random curdling (8  2.4), some special cases of random curdling (§2.5), non-cascade 
models (0 2.6) and, finally, practical considerations concerning the measurement of 
multifractal characteristics ($2.7). Section 3 presents experimental results concerning 
the multifractat nature of the dissipation field 6 (approximated by the square of the 
single derivative of the streamwise velocity, obtained using Taylor’s hypothesis). A 
detailed discussion of the power-law behaviour and of the convergence of moments 
as a function of averaging domain is presented. Also, experimental results concerning 
the scaling behaviour of high-order moments are analysed by studying the tails of the 
distribution functions of the dissipation, and their relationship with the multifractal 
spectrum. Section 4 presents an analysis of the measured multifractal spectrum of 
the field of dissipation, as well as a detailed comparison of the results to a variety of 
cascade models. A summary of conclusions is presented in $5.  

2. Multiplicative processes and cascade theories : a review 
2.1. Multiplicative processes : general concept and dejinitions 

The basic ingredient of multiplicative processes is that large ‘eddies ’ or fluid pieces 
transform or break down into smaller ones ; the fragmented pieces themselves yield 
even smaller ones, and so on. This then defines pieces of different generations; the 
generation step will be denoted by n. To each piece is associated a characteristic 
linear dimension r (for example, the diameter in the case of spherical eddies). We 
assume that the characteristic scale of a piece of the nth generation, r(n), will be 
given by the product of n numbers (to be called length multipliers ZI, 1 < j < n),  each 
of which is the ratio of consecutive lengthscales. In other words, 

Another vital ingredient is the concept of a measure density which, in the present 
context, is the rate of dissipation per unit volume E ( x ) ,  where x belongs to the union 
of all the pieces. Of particular interest is the total dissipation E, in a certain piece 52 
of size r .  This will be given by the integral of S ( X )  over the piece 52 as 

(2.2) 

When a piece R decays into smaller ones, each smaller piece can be thought of as 
receiving a fraction of E,. Analogous to lengthscales, the total dissipation on a certain 
piece of size r(n) of the nth generation will be given by the product of n numbers (to 
be called measure multipliers M,), each of which is the ratio of consecutive measures. 
That is, 

(2.3) 
n n 

j-1 I-1 
Er(m) = Er(o) n ‘r<j)/Er(j-l) = Er(0) n M j .  
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(4 (b) (d 
FIGURE 2. Schematic representation of an isotropic multiplicative process. A large piece, (a) ,  is 
divided into two smaller pieces, ( b ) .  Both pieces or ‘blobs’ may have a different density of 
measure, as indicated by the different shading. After the next iteration of the multiplicative 
process, each piece of ( b )  is divided into even smaller pieces, ( c ) ,  etc. 

3 + 
(4 (b) (c) 

FIGURE 3. Schematic representation of three stages of a stretching and folding process. A piece (a ) ,  
is stretched in the vertical direction, contracted unequally (thus accounting for the unequal 
thickness and measure) and then folded back to form the piece, ( b ) .  After another similar step, (c) 
is obtained. 

It is then clear that Richardson’s (1922) picture of turbulence cascade, in which 
‘blobs’ or whorls of turbulent fluid break down into smaller pieces - each ‘feeding on 
their velocity’, i.e. receiving a certain fraction of the flux of kinetic energy from 
larger scales ~ is a possible multiplicative process. This is depicted schematically in 
figure 2. 

Another generic process that occurs in nonlinear dynamical systems can be 
described qualitatively as the process of stretching and folding, typical of the 
evolution of a ‘blob ’ of points corresponding to  different initial conditions in phase 
space. This is also referred to as a horseshoe process. Figure 3 is a schematic of three 
stages of such a process, where the stretching in the vertical direction is followed by 
a folding. We adopt the view that the stretching and folding of turbulent fluid 
elements in physical space can be regarded qualitatively in the same spirit. The 
overall isotropy and simplicity of the breakdown of blobs is not present here, but it 
is a multiplicative process in the sense that the thickness and density of cach of the 
pieces are products of successive multipliers. 

Summarizing, a multiplicative process is one of fragmentation of a large piece into 
smaller ones, with each new piece receiving a fraction of the ‘measure’ of the larger 
unit, in such a way that the size and measure of a small piece are products of 
multipliers li and Mi (M, > 0 ,  li < 1) associated with its predecessors a t  all previous 
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stages or generations. In  the absence of definitive deductions from Navier-Stokes 
equations, the quantities li and Mi have to be considered random variables with a 
certain probability distribution. When such distribution functions do not depend on 
the levelj (or the characteristic size T ) ,  self-similarity will appear and, as will be seen 
below, power-law behaviour occurs in the moments and distribution function of E,. 
Physically, this implies that as long as the eddy size is larger than the Kolmogorov 
scale 7 and smaller than the integral scale L of the flow, the precise dynamics 
resulting from the Navier-Stokes equations - which determines the multipliers - 
should be independent of viscosity and, far enough from physical boundaries, also 
independent of boundary conditions. 

To clarify notation we stress that the index j refers to different generations. The 
variables M,  and 1, assume different values at a particular generation at  different 
locations. When such a distinction is necessary, it will be denoted by a second index 
i ;  e.g. Mi,i  is the measure multiplier corresponding to a piece at position i of 
generation j .  

2.2. Some early cascade models 

2.2.1. The 1941 theory of Kolmogorov 

This theory of universal, isotropic distribution of small scales of motion envisages 
a cascade where the only relevant quantity is the mean flux ( E )  or (E,)  of energy 
from large to small scales. This is a trivial multiplicative process in which the 
measure multipliers a t  a given stage are equal. There is no apparent dynamical 
reason for dismissing this possibility, but experience (see figure 1 )  precludes it. As 
pointed out by Kraichnan (1974), non-intermittent distributions of E ,  and E, can be 
produced only by strong spatial mixing of energy a t  all scales of motion, such that 
energy equilibration occurs as soon as it is transferred from any one scale to its 
offsprings. Kolmogorov’s (1941) theory implies that the mixing is so large that all 
fluctuations in the inertial range are smoothed. By the definition of the inertial range, 
viscosity cannot be responsible for this equilibration. It could in principle occur by 
the action of pressure fluctuations, which are known (Batchelor 1953) to transfer 
energy from one velocity component to another a t  roughly the same scales. 
Dimensional arguments show that the typical timescale of this process is of order 
7( r )  - r/Aur,  where Au, is a typical velocity increment over the distance r .  This is also 
the timescale characterizing the decay of an eddy into its offspring, and one could 
therefore argue that there is barely enough time for equilibrating energy at  a given 
scale. A certain degree of equilibration is likely to occur, but inhomogeneities at all 
scales remain because turbulence structures decay before the process is completed. 

2.2.2 The hypothesis of lognormality 

In  order to account for the observed intermittency, it is natural to assume that the 
M, in (2.3) fluctuate according to some distribution. Taking the logarithm of (2.3), 
one can write n 

(2.4) In [E,/ELI = C In (Mi), 
k=l 

where EL is the ‘total’ dissipation contained in pieces of fluid of size L ( N ~ ( 0 ) ) .  
Therefore, In [E,/E,] is the sum of identically distributed random variables In (M,).  
For the sake of simplicity, let us assume that these random variables are finite (i.e. 
M, + 0). Kolmogorov (1962) applied central-limit theorem to argue that In (E,) and 
In (6,) should have Gaussian distributions. 

However, central-limit theorem cannot be applied to rare events, which are the 
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X l L  

FIGURE 4. Binomial measure c(z)/(E) on the unit interval, using M = 0.6 or 0.4. (a) The original 
uniform distribution of density, and ( b )  after one fragmentation. The total dissipation on the two 
sides are 0.6 and 0.4, and the corresponding densities of C(Z) are 1.2 and 0.8. (c) E(Z) after 9 steps 
and (d )  after 13 steps. 

ones that contribute most to high-order moments. This was noticed by Novikov 
(1971), who concluded that high-order moments cannot follow lognormal dis- 
tribution. This was clarified further by Mandelbrot (1972). Furthermore, Orszag 
(1970) showed that if the moments followed lognormality, they could not uniquely 
determine the distribution. A further analysis of the rather unphysical conditions 
needed for asymptotic lognormal distributions can be found in Kraichnan (1974). 

2.2.3. P-model of fractally homogeneous turbulence 

In this model the multipliers M, are non-zero and equal on a fraction p of the new 
offspring, but zero on the other fraction (1 -/3) of the offspring (Novikov & Stewart 
1964; Mandelbrot 1974; Frisch et al. 1978). Scaling properties appear again if /3 is 
assumed to be independent of r .  There is no mixing between the empty and non- 
empty regions. Therefore, this model corresponds to the assumption that the 
timescale of spatial mixing is much larger than that associated with the decay of 
eddies into smaller ones. 

As will be seen in 53, the measured high-order moments of E, depart markedly 
from predictions of both lognormal and P-models. It is therefore necessary to study 
general multiplicative processes and their properties, to which the next two 
subsections are devoted. 
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2.3. Multifractals and their characterization by singularity spectra and generalized 
dimensions 

The question addressed here is the following : Given a function e(x)  such as in figure 
1, how best can one characterize i t ,  and what can be said about the multiplicative 
process that generated i t ?  It is apparent that  the mean and variance of e(x)  or the 
variable E', contain little information about E ( X )  ; furthermore, they are different for 
each cascade step. It has already been seen that lognormal and /I-models are not 
general enough. The required quantifiers will be introduced via the simple example 
of a self-similar binomial process, but the formalism to be discussed is valid for 
general multiplicative processes. 

The binomial process to be discussed here occurs in one dimension, where an initial 
segment of size L is divided into two segments of equal length (1, = i), and the M, 
have a bimodal distribution with only two possible values, say M ,  = p ,  = 0.6 or 
M ,  = p ,  = 0.4. That is, its distribution is given in terms of two &functions as 

p ( M )  = 0.5{6(M-0.4) +d(M-0.6)}, (2.5) 
independent of the cascade step j. For the present discussion, we additionally impose 
conservation of the measure a t  each step, which means that each piece gives rise to 
two pieces with the M, of both pieces always adding to  unity. Whether the multiplier 
0.4 (or 0.6) corresponds to the right or left offspring is selected a t  random. Figure 4 
shows the density obtained by such a process after n = 0, 1 ,  9 and 13 iterations or 
generations. To make contact with dissipation later, we use the symbol e to  denote 
the measure. After n steps, the size of each piece is r/L = 2-n, and it is easy to see 
that E, can assume values given by 

E,/EL = @y'npi-m'n]n (where m = 0 ,1 , .  . . , n). 

Each such value of E,/EL occurs n! /[m!(n-m)!]  times. Since n = -log,(r/L), one 
can define a new (random) variable a according to  

which now only depends on the ratio m/n (0 < m/n < l),  rather than on n itself. For 
illustrative purposes, a obtained from the binomial measure of figure 4 is shown in 
figure 5 after 9 and 13 iterations. We see that the random variable a fluctuates 
between limits that are independent of r or n, which suggests that the process can 
now be characterized in terms of the distribution of the rescaled variable a. For 
practical applications to  follow, it is more convenient to define a as a local scaling or 
Holder exponent (Mandelbrot 1989) according to 

E,/EL - (r /L)" or e,/eL - (r/L)a-d 

instead of as the ratio of logarithms (for the present example in one dimension, d = 
1) .  The convenience one gains is that this eliminates worries about non-unity 
prefactors in (2.8), which in general make the convergence of a to  a scale- 
independent variable rather slow (Meneveau & Sreenivasan 1989). Further, writing 
in this form emphasizes the fact that different values of a reflect different strengths 
of singularity as the box size tends to zero. 

We now turn to the distribution of a itself. Figure 6 shows that Hr(a) ,  the 
(normalized) probability density function of a at  the two chosen steps of the cascade, 
becomes narrower and more peaked with increasing n. Applying Stirling's formula to 
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FIGURE 5. Local values of a = In (E,/E,)/ln ( r /L )  for (a) r /L  = 2-' after 9 steps, and ( b )  for 
r /L  = 2-13 after 13 steps. 

1 .o 1.5 
a 

FIGURE 6. Normalized probability density Z7,(a) of the variable a of figure 5 for r/L = 2-O (solid 
line), and for r /L  = Z-13 (dashed line). 

the binomial coefficient in the limit of very large n, it is apparent that the rescaled 
logarithmic distribution function h(a),  defined as 

h ( 4  = [K(a)I/ln ( J v r ) ,  (2.9) 

(2.10) 

will tend asymptotically to 

h(a) = 1 - (1 - m / n )  log,(n/m- 1) + log,(n/m). 

Again this depends only on the ratio m / n  and not on n (or r ) .  Thus by dividing the 
logarithm of the real distribution function by n - logz(L/r), one obtains a 
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t 1 

a 

FIGURE 7 .  Logarithmic probability density h(a),  normalized by log(L/r), for r / L  = 2-' (solid 
line), and for r/L = .2-'* (dashed line). 

conveniently resealed, scale-invariant distribution function. Figure 7 shows h(a) = 
In [nr(a)]/1n ( L / r )  for the present binomial example, from which it is apparent that 
the distribution becomes scale-invariant (independent of n or r )  asymptotically. As 
pointed out by Mandelbrot (1989, where h(a) is called p(a) ) ,  the convergence of such 
a function can be proved rigorously for any multiplicative process following a 
theorem due to  Cram&. 

Now it is useful to ask the following question: Within how many boxes or pieces 
of size r does the variable a assume values within a band of width d u l  For this 
purpose one has to multiply the probability Ll,(a)da by the total number of boxes 
present a t  a specified level of the process. The total number of pieces of size r is equal 
to r-l for measures on a line as in figures 1 and 4, and in general equal to (r/L)-d in 
a d-dimensional space. The result is therefore 

N,(a) = (r/L)-d17r(a). (2.11) 

(If the measure itself exists only on a fractal set of dimension D < d ,  the d in (2.11) 
must be replaced by D.) It is now natural to  define f ( a )  as the logarithm of N,(a) 
normalized by In ( L / r ) .  This implies thatf(a) = h(a) + d  and that the scaling relation 

N,.(a) da - p(a)  (r/L)-f(") da (2.12) 

holds. Here p(a) is some a-dependent prefactor, not to be confused with the p(a) of 
Mandelbrot (1989). Instead of focusing on the scale-invariant distribution h(a),  one 
can study the scale-invariant distribution f (a) ,  the advantage being that a natural 
connection to fractal geometry can be made. This was recognized by Frisch & Parisi 
(1985) and further developed by Halsey et al. (1986), whose notation we use. We 
recall that a fractal set can be characterized by a dimension D given by 

Nr - ( ~ / h ) - ~ ,  (2.13) 

where N, is the number of boxes of size r needed to  cover the set. Comparing (2.12) 
with (2.13), it is natural to interpret f ( a )  as the fractal dimension of the set with a 
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values in a band da.  Since in general f ( a )  can take on different values for different a, 
measures e(z) such as in figure 4 are called 'multifractal measures'. 

Several comments are useful. Note that, in cascades, N, is also the total number 
of pieces resulting from the multiplicative process when they have reached a scale r .  
The dimension D defined according to (2.13) corresponds to the Kolmogorov 
capacity, which may differ from the Hausdorff dimension. (For a discussion of 
various dimensions, see Farmer, Ott & Yorke 1983.) In general, one cannot exclude 
the possibility that h(a) < -d. This means that there can be multiplicative processes 
for which a certain value of a will occur less and less often as the size r is decreased. 
In such cases, f ( a )  < 0 and cannot be interpreted as a dimension. This was noted by 
Frisch & Parisi (1985). Mandelbrot (1984, 1989) argued that this is no handicap in the 
statistical interpretation of multifractals. We shall expand on this in $2.4. Another 
comment relates to the rapidity with which the resealed function In [n,(a)]/ln ( L / r )  
tends to the asymptotic distribution with decreasing r .  This was treated in Meneveau 
& Sreenivasan (1989), where it was shown that logarithmic prefactors must in 
general be included in expressions like (2.12). 

Summarizing up to this point, a measure resulting from a multiplicative process 
has a limiting scale-invariant distribution, and the relevant variable is a local 
exponent a whose distribution or relative frequency of occurrence is given in terms 
of f (a )  ; f (a)  can be interpreted geometrically in most cases as a fractal dimension. 
Since a characterizes the strength of the singularities, the curve f ( a )  may also be 
called the singularity spectrum. 

Another way of characterizing a multiplicative measure is by means of moments. 
Returning to figure 4, it is apparent that the quantity (e,") increases as the cascade 
proceeds to smaller scales. However, it is easy to show that its logarithm divided by 
In ( r / L )  is a constant, independent of the cascade step n. Following the thought that 
non-pathological distributions can be described by moments of all orders, it is useful 
to define the exponent 7(q )  through the relation 

(E: )  - EQL(r/L)r(Q)+D. (2.14) 

For similar definitions of moment exponents (using different notations), see Novikov 
(1969) and Mandelbrot (1974). Alternatively, one can also consider the sum of E: 
over all (disjoint) boxes of size r according to 

(2.15) 

Additionally, one can define (Hentschel & Procaccia 1983) the exponents D, as 

D, = 7 ( q ) / ( q -  1) .  (2.16) 

Hentschel & Procaccia (1983) showed that Do is the fractal dimension of the support 
of the measure, D, the information dimension and D, the so-called correlation 
dimension. Here, high positive values of q emphasize regions of intense dissipation, 
while negative values of q accentuate low-dissipation regions. The exponents D, are 
called 'generalized dimensions'. We relegate to Appendix A a discussion of the 
precise sense in which D, is to be interpreted as a dimension. For future reference, we 
write (2.14) also in terms of e, = E,/rd,  the mean dissipation in boxes of size r ,  
according to 

(2.17) 

Following Frisch & Parisi (1985) and Halsey et al. (1986), one can relate the 
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exponents D,, a and f ( a )  by evaluating the sum in (2.15) as an integral over all values 
of a as ,. 

(2.18) 

We have used (2.12) in writing the first step. Using the method of steepest descent, 
one approximates the integrand in the limit of small ( r / L )  by a Gaussian centred 
around the a-value that minimizes qu - f (a) .  The result is proportional to rQa-f(a) 

(2.19) 
evaluated a t  an a such that 

with the condition that f "(a) < 0. Therefore, a t  this value of a, one obtains 

af(a)/aa = q, 

f La(q)l = qa(q) - (q- ') DQ7 

a(q) = d/dd(q- ') DQl .  

(2.20) 

(2.21) 

which, upon using (2.19), yields 

These Legendre transformations (one replaces the local value of the function 7 = 
(q- 1)  D,  by its slope a(q) and its intercept f [a(q)]) relate the exponents a, f(a) and 
D,. The parameter (I selects a specific value of the variable a according to (2.21). 

Here, a digression concerning a finer point is worthwhile. As is usual for systems 
with a small-scale cutoff, scaling relations such as (2.8) and (2.12) are not expected 
to be valid for r smaller than 7. In  general, one may conjecture that (2.8) should be 
multiplied by a 'universal scaling function ' g, [r /T ,  a], which has the property that 
for r / q  = 2 % 1,  ga(x, a) + 1 ,  and for z + 0, g a ( X ,  a) -+ &"-. Similarly, (2.12) should be 
multiplied by another scaling function g,[r/q,a] with the condition that for 2 9 1, 
g f ( z ,  a) --f 1,  and for 2 + 0, gf(x, a) + In  a similar fashion, (2.15) should also 
include a scaling function g,{r/V, a(q)} with the property that for x 9 1,  g,[z, a&)] + 
1, and for z + 0, g,[x, a(q)] + X(Q-l)(d-Dq). The precise relation between g,, g, and g, 
probably depends on the prefactor p(a). The present work will not deal with such 
scaling functions. Such a study, which would be of interest in the context of the 
dissipative range of turbulent scales ( r  < T), is left as a future task. 

A useful characterization of intermittency is given in terms of the so-called 
intermittency exponent p. Several definitions exist which are not equivalent in 
general. Kolmogorov (1962) introduced p as the rate of increase of the variance of 
log (e,./(~)) as a function of log (L/r )  according to 

gtne = p In ( L / r ) .  (2.22) 

I n  Appendix B we show that this intermittency exponent is related to  the D,-curve 
in the multifractal formalism according to  

p = -d2[(q- ') DQl/dq21Q-,' (2.23) 

Another common definition of the intermittency exponent refers to the scaling 
exponent of the autocorrelation function of e according to  

( ~ ( z )  e(z+r) )  - ( ~ ) ~ ( r / L ) - p ' .  (2.24) 

If one uses (E (z )E (z+~) )  - (E:) (Yaglom 1966; Cates & Deutsch 1987; Meneveau & 
Chhabra 1990), it is clear that  

p' = d-D,. (2.25) 
In  general, p + p'. 

Finally, we point out that early cascade models discussed before correspond to 
special cases of the multifractal description. More details are given in Appendix C. 
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2.4. Random curdling 
In the last section, the multifractal formalism was motivated by considering a 
specific binomial distribution p(M)  of the multipliers M in the multiplicative process, 
although (for the most part) the subsequent discussion was not constrained by the 
specifics of the model. For general distribution functions of the multipliers M ,  one 
obtains Mandelbrot's (1974) random curdling model. The model introduces 
important concepts concerning the experimental results of $3. In discussing it, we 
closely follow Mandelbrot (1974, 1984, 1989), and refer the reader to Kahane (1974), 
Peyriere (1974) and Kahane & Peyriere (1976) for rigorous proofs of several of the 
results. 

Random curdling is a general multiplicative process, where a A-dimensional 
'piece' of size r decays into bA smaller pieces of equal (linear) size rb-l;  b is the base 
of the process that can take any integer value. Although one is specifically thinking 
of three-dimensional space ( A  = 3), we discuss cascades in some general A-  
dimensional space ($ 2.4.1). Intersections of such cascades with lower dimensional 
subspaces of dimension d < A are of practical relevance, and the main results of such 
operations are discussed in $2.4.2. Details are relegated to Appendix A. 

2.4.1. Conservative cascades in A dimensions 
A cascade is called conservative if the measure is conserved at each single step of 

the cascade, namely 
CM5.6 = 1, 

f 
(2.26) 

for allj,  where the sum over i extends to all bA pieces created at  a single cascade step. 
Since all M5,i are assumed to be positive, none can exceed unity. 

When calculating the moment exponents D, of such measures, the dimensionality 
of the embedding domain will be indicated as a subscript on the exponents. For 
example, DA,, stands for the D, exponents pertaining to the A-dimensional domain. 
Now we focus on the statistics of the total dissipation or energy flux in a box of 
size r after the cascade has proceeded k steps. We will assume that the size of the 
initial eddy is L (comparable with the integral scale of the flow). Therefore 

r / L  = bPk.  (2.27) 

Following (2.3) the flux EA,r in a given piece or box of size r is the product of k 
multipliers along the path on the hierarchical tree leading to the particular box. That 
is, 

(2.28) 

In order to calculate the moment exponents DA, one has to evaluate the sum of E j ,  ~ 

over all (L / r )A  boxes. For this random model it is useful to define the exponents DA,o 
according to 

.. 

(2.29) 

where EA = EA7L and the averaging ( ) is performed over the distribution of the 
multipliers M .  The average of the sum can be replaced by the averge of E j , ,  multiplier 
by the total number of boxes. One then calculates the following average: 

(2.30) 

where one uses the assumptions that the distribution does not depend o n j  and that 
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the multipliers a t  different steps are uncorrelated. The index j will generally be 
omitted from here onwards, unless explicitly required when denoting products a t  
different cascade steps. 

Combining (2.27)-(2.30), one arrives a t  the result that  

' q ,  A = 10gb[bd(Mq)l/( - a).  (2.31) 

(Mq 
Legendre transforms yield 

' 
a,(q) = (2.32) 

and f ~ f [ ~ ( q ) l  = qad(q)+ 10gb[bd(Mq>l. (2.33) 

This illustrates the fact that fd[a(q)] depends on all the moments (Mq) of the 
distribution of M, and not just on the second-order moment of In (M), as visualized 
in the lognormal case. 

2.4.2. Lower-dimensional intersections 
The field of dissipation is three-dimensional, but most experiments examine only 

lower-dimensional intersections of it. It is therefore necessary to determine the 
relation between the properties of a A-dimensional field and those of its d- 
dimensional intersection. Relegating details to Appendix A, we state the most 
important results : the D, exponents, as well as a andf(a), in d-dimensions are simply 
related to those in A-dimensions according to  

Dq,d =D,,,--(A-d), ad = ad-(A-d), f d ( a )  =fd(a)-(d-d).  (2.34) 

This means that by knowing the exponents in A dimensions, one can obtain the 
corresponding ones in d-dimensional cuts. A more basic question is the inverse 
problem of obtaining the exponents in the A-space from those in the d-dimensional 
cut. From (2.34) i t  is apparent that  the exponents for the d-dimensional cut can 
become negative, or fd(a) < 0. This does not present any problem in the statistical 
interpretation of multifractals, but the geometrical interpretation of fd(a) as a 
dimension cannot be invoked. The cases when DqVd < 0 and ud < 0 present more 
difficulties because it turns out that such values cannot be measured directly. This 
is related to possible divergence of certain moments along the d-dimensional cut (see 
Appendix A). 

There are thus three distinct regions of the f ( a )  curve signifying different 
properties. It is useful to  indicate the current nomenclature for each of them 
(Mandelbrot 1989). The region f(a) > 0 is called the manifest part, while the region 
f(a) < 0, a > 0 is called the latent part; that withf(a) and a both negative is called 
the virtual part. 

2.5. Some special cases of random curdling 

Special cases can be obtained by assuming specific distributions for the multipliers 
M. 

2.5,l. Hyperbolic or a-model 
Motivated by the possibility that  moments of e might diverge on linear cuts, 

Schertzer & Lovejoy (1985) introduced the so-called a-model, which is a simple 
example of a non-conservative cascade in one dimension. Here the multipliers M can 
adopt two distinct values M, and MI, with probabilities P and 1 - P .  Therefore, 

p(M) = PS(M-M,) + (1 - P )  S(M-M,). (2.35) 
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Since the condition ( M )  = b-d must hold, there are three free paramcters in this 
model : M,,  P and b. By conveniently selecting them, one can produce divergence of 
moments for one-dimensional cuts (see Appendix A). We will return to this point in 
§ 4. 

2.5.2. Binomial model (p-model) 
One can in principle reduce the number of free parameters even further by fixing 

the numbers b and P. By assuming that each offspring can have two distinct 
multipliers ( b  = 2) with the same probability, Meneveau & Sreenivasan (19873) 
proposed a binomial, or two-scale Cantor measure, model. 

The choice b = 2 was made essentially in accordance with the conventional wisdom 
that the energy transfer seems to be local in wavenumber space, and involves 
wavenumbers whose sizes are not disparate. Novikov (1971) gave a somewhat 
obscure justification of this choice on the basis of the quadratic nonlinearity of the 
Navier-Stokes equations. In  three-dimensional space the cascade is assumed to be 
conservative and an eddy of size r decays into b3 = 8 new eddies of size $r. The only 
free parameter is M,. In  accordance with the literature on generalized Cantor 
measures (e.g. Halsey et al. 1986), multipliers corresponding to one-dimensional 
sections of this model were called p ,  and 1 -pl. This implies that  each piece receives 
either a fraction M, = 9, or M ,  = a( 1 - p l )  of the flux of kinetic energy. Therefore, 
the ‘p-model ’ pertains to 

P W )  = MWf-MO) + &(M-M,)}, (2.36) 

(2.37) 

This model is intermediate between Kolmogorov’s (1941) model and the P-model, in 
the sense that it allows for inhomogeneities to be partially mixed during the cascade. 

Recently, a simple probabilistic model for the multiplier distribution has been 
proposed by Chhabra & Sreenivasan (1990). 

2.6. Non-fractal models of intermittency 
Several other recent models do not fall within the class of spatially self-similar 
cascades. These will be briefly reviewed here. 

Inspired by the numerical results of Siggia (1978), Nakano & Nelkin (1985) 
proposed an intermittency model in which the energy transfer to smaller scales 
occurs in temporal bursts that are spatially extended as opposed to the nested spatial 
inhomogeneities envisioned in the fractal models. By assuming a certain scaling form 
of such bursts, characterized by a single exponent related to their speed of 
propagation, the scaling exponents 7 ( q )  can be computed (Nakano 1988b) if one 
replaces the spatial averaging in (2.14) by a temporal one. Nakano has shown that 
thef(a)  curve of such a model consists of two single points, and the model predicts 
no intermittency corrections to  the -5 spectrum. It must be stressed that Q and 
f(a) in this model do not correspond to  geometric quantities as they do in the usual 
multifractal formalism, but arise rather as scaling exponents of time averages. 

Another model, proposed by Yakhot, She & Orszag (1989) on the basis of 
renormalization group treatment of the randomly stirred NavierStokes equations, 
relaxes the conservation of flux of kinetic energy to smaller scales, and assumes that 
a fixed fraction of the flux at each cascade step proceeds directly to the smallest scale 
7. In  other words, the flux Au;/r (where Au,. = lu(x)-u(x-r)l) differs from ( 6 )  and 
equals 

Au:/r - ( 6 )  (r/T)-@. (2.38) 

FLY 224 15 
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This model does not obey the condition (Au:/r) = - - $ ( E )  which arises from the 
KarmBn-Howarth equation (see e.g. Monin & Yaglom 1971). However, proceeding 
further by replacing 8,. in (2.17) by Au:/r,  we get 

7(q)  = -&q+(q-l)d.  (2.39) 

The situation that 7(q = 1 )  += 0 shows that the cascade is not conservative even on 
the average (as opposed to  the non-conservative cascades of Appendix A which are 
conservative on the average). 

Recently, Hosokawa (1989) proposed that the dissipation is distributed with a 
square-root exponential distribution. This was motivated by the numerical result 
that turbulent vorticity, o, is distributed exponentially; this feature is also born out 
by experiments (Sreenivasan & Fan 1989). The distribution has only one free 
parameter which can be fixed by the global mean ( E ) .  If the exponential behaviour 
occurs for all box sizes r ,  moments ( 6 ; )  for all q cannot obey the scaling of the form 
(2.14). Thus, square-root exponential distributions at all r are incompatible with 
multifractality. As will be seen in 53.3, the observation that the tails of E,. might have 
a square-root exponential distribution is quite significant when analysing divergence 
of high-order moments. The contradiction with multifractality disappears if only the 
tail is square-root exponential. 

A similar situation arises if the distribution of E ,  obeys gamma statistics (Andrews 
et al. 1989). This distribution has one more free parameter than that considered by 
Hosokawa (1989), and can be selected to produce the right power-law behaviour of 
the second moment. As observed by Andrews et al. (1989), it  follows that higher- 
order moments do not obey exact power laws. Again, this occurs because the entire 
distribution is prescribed, which decays too quickly to produce any scale-invariant 
power-law behaviour of moments. 

Another non-fractal model of intermittency has been proposed recently by 
Kraichnan (1990). 

2.7.  Measuring D,, a and f ( u )  in practice 

A practical question concerns the measurement of the exponents introduced in 52.3. 
Usually one does not know exactly the prefactors in (2.7), (2.11) and (2.14) because 
the precise value of L is ambiguous, but they can be eliminated by taking ratios a t  
two different scales r .  The generalization of this procedure is to use many different 
scales and generate log-log plots whose slope (if there is a linear region) will be the 
exponent sought. 

In  many applications one does not know the measure at different levels of the 
cascade, but only a t  scales corresponding to  the last cascade step. Under certain 
circumstances (spelled out in Appendix A), E,  can be obtained by adding the measure 
in all the smaller boxes contained in the size r, a procedure that can be repeated for 
arbitrary r .  This then allows the construction of the appropriate log-log plots. 

In  general, one also does not know the size and exact position of the pieces that 
resulted from the original multiplicative process. In  the binomial example used here, 
we know that the process occurs on pieces of size 2-" starting a t  the origin, but if we 
are given an E ( X )  at a certain level of an unknown multiplicative process, we do not 
have this knowledge. It turns out that it is possible to use boxes of sizes (and 
positions) different from the 'natural partition' 2-n and, for most cases of interest, 
the results will be unaffected (except for the appearance of oscillations as described 
below). 

Thus, what renders the whole multifractal formalism applicable to real measure- 
ments is that we can obtain the multifractal exponents given the measure E(X) at 
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FIGURE 8. Logarithmic plots of [c (E,/EL)'7]'"q-" vs. the box size ( r / L )  for five different values of 
q. The solid lines are least-square fits through the points. The slope of these lines is the measured 
value of D,. The slight oscillation of the points around the power law is expected, and is due to the 
phenomenon of lacunarity. 

a single cascade step (usually a t  scales corresponding to an 'inner cutoff') by 
analysing e(x)  with varying degrees of resolution. This is very similar to the situation 
for simple fractal sets whose fractal dimension can be measured by looking at the set 
with varying resolutions (using e.g. arbitrarily placed boxes). The difference, 
however, is that  we have to examine in addition the intensity or density e(x)  with 
varying degrees of resolution. 

To illustrate these points, consider our binomial process iterated 17 times, so that 
the smallest pieces are of size 2-17. Although we do know here the details of the 
cascade, we shall pretend ~ in analogy with the experimental situation - that  we 
have access to the measure only<at this particular level. Now, we compute E, as the 
integral of the measure over segments of different sizes r ,  where r is larger than 2-17. 
The values of r are logarithmically spaced. Again, to simulate the ignorance inherent 
in experiments, we deliberately choose box sizes different from the 'natural 
partition' on a binary base, arbitrarily the base 1.1.  

Figure 8 shows the double logarithmic plots of [~((E, /EL)'J] ' / (*- ' )  ws. r / L  for 
different values of q. The solid lines are least-square fits to the points, whose slopes 
(according to (2.14)) are D,. The use of box sizes different from 2-m induces slight 
oscillations around the basic power-law structure. This is related to  the notion of 
Zacunarity (Mandelbrot 1982; Smith, Fournier & Spiegel 1986; Novikov 1969 is an 
early reference), and introduces a small error in the determination of scaling 
exponents from log-log plots (Badii & Politi 1984; Arneodo, Grasseau & Kostelich 
1987). 

Figure 9(a) shows the resulting curve of D, 0s. q along with the analytical result 

D, = log,[P~+P~l/(l-q).  (2.40) 

The two are in good agreement in spite of our ignorance about the binary process. 
Applying transformations (2.19) and (2.20) to the measured D, one obtains the f ( a )  
curve shown in figure 9(b), where the continuous curve is the analytical result. The 
good agreement again emphasizes that measures such as in figure 4 can be 

15-2 
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FIWRE 9. ( a )  D, curve of the binomial measure with M = 0.6 or 0.4; ( b ) f ( n )  obtained from the D, 
curve using the Legendre transform. Circles are obtained from slopes of plots like figure 8, and the 
solid line is the theoretical prediction. It is seen that the ‘blind’ procedure used in boxing the data 
introduces small errors in D, and f(a). 

characterized adequately by their scaling properties obtained from a particular step 
of the cascade process. 

For methods of obtaining f(a) directly without involving the moment exponents 
D,, see Meneveau & Sreenivasan (1989), Chhabra & Jensen (1989) and Chhabra, 
Jensen & Sreenivasan (1989). For issues related to computing thef(ol) curve directly 
from the multiplier distribution, see Chhabra & Sreenivasan (1990). 

3. Experiments on the multifractal distribution of E 

This section deals with the experimental exploration of the multifractal 
distribution of E ,  the dissipation rate of turbulent kinetic energy. Owing to 
experimental restrictions, we use one-dimensional cuts of a single term of E .  Further, 
as is usually the practice, we resort to Taylor’s frozen-flow hypothesis and analyse 
flows that have a convective velocity that is large compared with turbulent 
fluctuations. There is a vast literature on the validity of Taylor’s hypothesis (e.g. 
Lumley 1965 ; Antonia, Chambers & Phan-Thien 1980), primarily directed towards 
possible corrections required when interpreting the frequency spectra as wavenumber 
spectra. In ordcr to minimize data manipulations prior to the analysis, we do not 
attempt such corrections here, which are, in any case, not without problems, 
especially for low Reynolds number; see, for instance, Siggia (1981). Prasad et aE. 
(1988) and Prasad & Sreenivasan (1990a) have shown that x, the dissipation rate of 
passive scalar fluctuations, displays the same multifractal characteristics as its 
individual terms. In  these same references it was also shown that the use of Taylor’s 
hypothesis was satisfactory. Even though it is not clear how much of this conclusion 
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Flow 

Position 
of hot wire 

Free-stream 
velocity 
C, (cm/s) 

Convection 
velocity at 
hot-wire 
location U ,  (cm/s) 

r.1n.s. velocity 
fluctuations 
u’ (cm/s) 

Taylor microscale 
(cm) 

A = u‘Z7c/((du/dt)2)i 

Reynolds number 
R ,  = U , L / v  

R,  = u’A/v 

Kolmogorov 
microscale 

Longitudinal integral 
lengthscale L (cm) 
from autocorrelation 

Data-acquisi tion 
frequency fa (Hz) 

Low-pass filter 
setting f, (Hz) 

Number of points 

Laboratory 
boundary layer 

boundary-layer 
thickness : 
8 - 4 c m  

y/s = 0.2 

1200 

900 

50 

0.32 

32 000 
L = S  

110 

0.016 

2.9 

25 000 

12500 

107 

Wake of a 
cylinder 

Cylinder dia. 
d = 1.9 cm 
centreline 

x / d  = 90 

800 

720 

26 

0.28 

10000 
I, = d 

50 

0.026 

4.2 

25000 

10000 

5 x lo6 

Atmospheric 
surface layer 

Height = 2 m 
above the 
roof of a 
4-storey building 
( h  - 18 m above 
ground level) 

Mean velocity 
a t  hot-wire 
location = 600 cm/s 

600 

42 (-f30%) 

5.3 

7 x lo8 
L = h  

1500 ( -f 30 yo) 

0.07 ( + 7 % )  

>17000 

6000 

2000 

3.6 x 105 

TABLE 1. Summary of experimental conditions 

applies to e (which, unlike x, has cross-terms in it),  we are constrained by the present 
experimental technology to represent the real dissipation rate e by its surrogate E’, 

where 

Here u1 is the velocity fluctuation in the ‘streamwise’ direction. 

- (au,/at)2. (3.1) 

3.1. Experimental conditions 
Velocity measurements were made with a 5 pm diameter 0.7 mm long hot wires 
operated on a DANTEC 55M01 constant- temperature anemometer at an overheat 
ratio of 1.7. The tcmporal response was adjusted to be flat up to about 20 kHz. The 
signal was low-pass filtered (roll-off rate of 18 dB/oetave) with a DANTEC 55D26 
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signal conditioner at a frequency fp. The signal was digitized with 12-bit resolution 
on a MASSCOMP 5500 computer using a sampling frequency f,. Details of 
experimental conditions are summarized in table 1 .  The hot wire is operated in the 
linear regime, so that calibration is not necessary. A voltage fluctuation V(t,), which 
is proportional to the velocity fluctuation ul,  is measured. The dissipation is then 
calculated using simple finite differences on the voltage V(t i ) .  In  Appendix D, we 
show that the results are robust with respect to different methods of evaluating the 
derivative. Since we normalize E' by its mean, we omit multiplicative factors from the 
analysis and write 

The Kolmogorov microscale 7 is calculated from the signals according to 

(3.3) 

where U, is the mean speed a t  the measuring station, v is the kinematic viscosity of 
air and u' is the root-mean-square velocity fluctuation. The resulting values of 7 for 
different flows are shown in table 1. Thc Taylor microscale A calculated according to 

is also displayed in table 1.  The integral lengthscales L listed in the table were 
obtained from the autocorrelation of the velocity (using Taylor's hypothesis). For 
the atmospheric surface layer the integral scale was taken to be of the order of the 
height of the measuring station above ground level. The Reynolds numbers based on 
ui and the integral scales L and Taylor microscale A are also listed in table 1 .  Very 
long records of data were available for the laboratory flows (lo7 points for the 
boundary layer and 5 x lo6 points for the wake). For the atmospheric flow, the 
number of points was 3.6 x lo5. 

Figures 1 (a) and 1 ( b )  show typical segments of E' for the laboratory boundary layer 
and the atmospheric surface layer respectively. It is apparent that ( b )  displays more 
intense peaks than does (a) .  Qualitatively, since in (b)  the scale separation between 
L and 7 is much larger than that in (a), one is tempted to compare them to figures 
4 (c) and 4 ( d )  where the same multiplicative process is shown at different levels. If the 
process is the same, then the f(a) and D, curves of the measures of figures 1 (a) and 
l ( b )  should be the same. One of the goals of this section is to ascertain using 
experimental data whether this is indeed the case. 

Returning to the velocity signals, figure 1 0  (a )  shows the autocorrelation function 
of the velocity signals in the laboratory flows. The correlation remains quite 
substantial over distances larger than L.  The dashed vertical lines enclose a range of 
scales within r / q  = 30 and 300. As will be seen below when analysing the multifractal 
characteristics of the dissipation field, the scaling ranges for the laboratory flows are 
located within such a range. The autocorrelation function of the atmospheric flow 
decays much more slowly, and the appropriate scaling range is much larger (see 
below). The power spectrum of the velocity signals is shown in figure 1O(b) for the 
two laboratory flows as well as for the atmospheric one. Note that we have used 
k: = f/U,, where f is the running frequency. (Using the definition k = 2xf/U1 only shifts 
the curves to the right by logl,[2x] M 0.8.) Again, the dashed lines enclose the scaling 
range to be used later for the laboratory flows. Also shown as a solid line is the -5  
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FIGURE 10. (a) Autocorrelation function of the velocity signal obtained in the laboratory boundary 
layer (circles) and in the wake of a cylinder (squares). Arrows mark the corresponding integral 
scales, and the dashed lines enclose the region used for finding the power-law exponents for these 
flows. (b) Power spectrum of the velocity signals obtained in the laboratory boundary layer (lower 
curve), in the wake of a cylinder (middle curve) and in the atmospheric surface layer (upper curve). 
For laboratory flows, arrows mark wavenumbers corresponding to the integral lengthscales, and 
dashed lines enclose the region used for finding the power-law exponents (see text). For high 
wavenumbers, some intermediate points are omitted to avoid cluttering. 

slope. It is clear that the spectra of the laboratory flows are slightly curved, and that 
no unambiguous inertial range is visible for these low-Reynolds-number flows. It will 
be shown in $3.2 that the scaling is somewhat better for moments of dissipation, 
much better when averages of the dissipation were obtained over segments of data 
of the order of a few integral scales only. Nevertheless, we point out that the range 
r / y  = 30 to 300 that will be used in $3.2 is roughly consistent with a - %  power 
spectrum. In  passing, we remark that the large-scale behaviour in the boundary- 
layer flow is consistent with a - 1  spectrum (Perry & Abell 1975) indicated by 
another solid line. We further want to draw attention to the fact that for the 
spectrum of the wake, the best scaling range seems to be between log,,[kq] = - 3 and 
-2, corresponding to scales r / q  between 100 and 1000. The slope there is appreciably 
flatter than -8, but the upper bound on the scaling range is larger than where the 
inertial-range behaviour normally terminates. (This observation was also made in 
Prasad & Sreenivaaan 1990b.) The scaling range for the atmospheric flow is sizeable 
and unambiguous, extending a t  least down to wavenumbers log,,[ky] - -4. 
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FIs r JRE 11. Curves based on histograms of the integrated dissipation for different box sizes 
obtained in the laboratory boundary layer. N(X, )  AX is the number of boxes (of size r ) ,  where the 
variable r = log,,[E,/E,] adopts values in a range X,+&Y. 0, box size r = 167; 0,  r = 407; 0 ,  
r = 1007; *, r = 2007; A, r = 40017. 
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FIQURE 12. Values of (E, /E,) ,  raised to  the fourth and fifth powers, weighted by their number 
of occurrences N(X,)  AX. 0, q = 4; 0,  q = 5 ,  both for a typical box size r = 64.11. 

3.2. Measuring the D, exponents of the dissipation 
As discussed in $2.7 we consider Er(xi), the dissipation integrated over disjoint 
segments of length r centred around location xi. For simplicity, we normalize by E,, 
the total dissipation occurring in the entire data set. That is, we use 

~ ' ( x )  d r ,  E, = 1 d(x)  dx. 
all points 
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FIGURE 13. Same as in figure 12, but for the negative power q = - 2  emphasizing low values of 
(EJEt) , .  

Next one needs to computer sums x,[E,(zi)/E,]'J. For long data sets, these 
computations are time consuming because they have to be repeated for all values of 
q. For this and for other reasons explained below, it is convenient first to construct 
histograms of the random variable X = log,,(E,/E,). This was repeated for 17 values 
of the box size r ,  ranging from r = 167 up to 6407. Figure 11 shows curves based on 
histograms in logarithmic units obtained in the laboratory boundary layer for a few 
typical box sizes. Here N ( X j )  AX is the actual number of boxes of size r ,  where X takes 
on values in a band X , k $ A X .  The sums of (E,/E,)'J are computed using the 
histograms as 

C [E,(xc)/Et]q = ( 10xj)QNj(Xj) AX - r(q-l)DQ. 
i 

(3.5) 

To show that data records are sufficiently long to ensure statistical convergence for 
values of q up to 5 and down to -2, we show in figures 12 and 13 plots of the 
summands (lOxj)'JN(Xj) AX for q = 5, 4 and -2. The summands of (3.5) close well 
enough. Figures 12 and 13 are for an intermediate box size of r = 647, but the 
behaviour is similar for other box sizes considered. This criterion of convergence is 
in fact very conservative. As discussed in $2.7, the quantities of relevance in 
measuring the D,  exponents are the logarithm of the moments divided by (q- 1). To 
show convergence of these latter quantities, we shall present moments of E ,  = EJr, 
normalized by ( E )  = Ey/9,  as a function of the record length 9. We consider 
moments of E , / ( E )  rather than of E,/E,, because the statistically stable behaviour 
of the latter tends to a uniformly decreasing function of 2 (because E ,  increases 
indefinitely with 9), while moments of E , / ( E )  tend to a constant value. They are 
trivially related by ( E ; ) / ( E ) ~  = ((E,/E,)Q) ( 2 / r ) q .  Figure 14 shows wake data for 
q = 4 as a function of 9 for three typical values of the box size r .  It is clear that there 
are no appreciable fluctuations over two orders of magnitude of the record length 9. 

We now apply (3.5) for both laboratory flows for 15 q-values between - 2 and + 5. 
Figure 15 (a-f ) shows the appropriate log-log plots for six representative values of q. 
The results for the wake are shifted from those for the boundary layer, because the 
records are of different lengths in the two cases. The D,  exponents are obtained from 
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FIGURE 14. Moments of the locally averaged dissipation rate 8, in the wake plotted as a 
function of the record length Y for various r / y ;  q = 4. 
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the linear regions of such plots. The scaling range is not entirely unambiguous 
because of the low Reynolds number of the laboratory flows. However, the range 
between r / r  = 30 and 300 appears reasonably linear. The lower limit of r / q  = 30 is 
close to the lower limit of the inertial range used in Anselmet et al. (1984), but the 
upper limit of r / r  = 300 (about 1.515) is considerably higher than their upper limit. 

Straight lines are drawn by least-square fitting through data points in the range 
r / r  = 30 to 300. These are shown as solid lines, whose slope corresponds to D,. In  
figure 16 (u-f) the values of [C (Er/Et)'J]l'('J-l) weighted by ( r /q)-% are plotted for 
both flows. The existence of reasonably horizontal plateaux in the range r / q  = 30 to  
300 points to the reasonableness of the estimated D,. To test the sensitivity of the 
results with respect to the precise choice of the scaling range, we have obtained fits 
in ranges r / q  = 20 to  200 and r / q  = 40 to 400. Figure 17 shows the results. The 
sensitivity of the results to the scaling range is indicated by dashed lines, which 
correspond to obtaining D,  in the range r / q  = 20 to  200 (lower line for q > 0 and 
upper line for q < 0) and in the range r / y  = 40 to  400 (upper line for q > 0 and lower 
line for q < 0). The agreement between the various results for both flows is quite 
good. 

Given our conservative criterion for convergence, we now want to explore the 
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FIGURE 18. Log-log plots of [c (E,/E,)q]l"q-l)  for q = 4 as a function of r/y, for increasing values of 
the record length 9 used to compute C (EJE,),. From top to bottom, 9 = SOL, lOOL,200L, 400L, 
800L and 16001,. 1, is the integral scale. The flow is the laboratory boundary layer. The slope of the 
solid line fit through the points in the range from r / q  = 10 to 300 is Dgm4 = 0.62. 

effect of computing sums or moments over shortcr records of data. We recall our 
earlier observation (Meneveau & Sreenivasan 1987a) that  the scaling appears to be 
better when one computes sums over shorter records of data. (A similar observation 
was made for fractal interfaces in Sreenivasan & Meneveau 1986.) As discussed in 
Appendix A, a single realization of a cascade should contain a statistically 
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FIGURE 19. Moments of the locally averaged dissipation rate E,,  as a function of the record length 
Y used for the averaging for various r / q ,  again for the boundary layer. (a) q = 5 and ( b )  q = -5. 

representative sample of the a-values in the manifest part off(a). This of course is 
valid only asymptotically for q/L+O, or at very high Reynolds number, where the 
num%er of multipliers is large. For laboratory flows, averaging over a few tens of such 
samples improves the statistics considerably. 

Of immediate interest is the power-law behaviour under such circumstances. 
Figure 18 shows log-log plots of [x (E,./Et)'J]1'(9-1) ws. ( r / q )  for q = 4 from the 
laboratory boundary layer (see table l ) ,  where the sum is evaluated over increasingly 
long segments of data (from top to bottom: 2 = 50L, lOOL, 200L, 400L, 8OOL and 
1600L). The solid line is a fit through the results for 50L in a range between r / q  = 
10 to 300, and the slope is D,=, = 0.62. The scatter disappears as 2 is increased, but 
the curving of the points makes it more difficult to identify power-law behaviour. It 
appears, therefore, that a better scaling can be observed by considering data sets of 
the order of a few tens of integral scales. It must be stressed that, even though 
moments or sums are statistically not completely converged for segments of order 
lOL, the logarithms of the moments divided by ( q - 1 )  do converge to reasonably 
stable values. This feature also permits us to compute D, for q more negative than 
-2. Figure 19(a) shows the moments as a function of 2 for a high moment q = 5 for 
three typical values of the box size r .  Similar results for q = -5  are shown in figure 
19 ( b ) .  The distance between the curves corresponding to different box sizes does not 
vary appreciably, meaning that the slope of their log-log plots (see below) will give 
good estimates of the exponents sought. 

We treat these observations as empirical facts (which are not fully understood) and 
proceed to compute D, from short segments of data. Figure 20 shows representative 
log-log plots for six different segments of the boundary-layer flow for different values 
of q (4 ,  0.5 and - 4 ) .  The solid lines are fits in the best scaling ranges selected on a 
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FIGURE 20. Log-log plots of [x ( E , / E , ) q ] ' ~ ' P ~ l )  as a function of r / y  for several typical segments of 
length equal to 9 = 50L obtained in the laboratory boundary layer. 0, q = 4; 0,  p = 0.5; 0, 
q = -4. Solid lines are linear least-square fits in a range selected on a case-by-case basis. (a- f )  
correspond to different segments of the data. 

case-by-case basis. For q > 0, usually the range between r/rj = 12 and 400 was used. 
For q < 0, the results at small scales r/rj < 40 tend to fall-off faster than a power law. 
As discussed in appendix C of Mencveau & Sreenivasan (1987a), this is due to the 
influence of noise (digitizer and otherwise). The appropriate scaling range for q < 0 
was usually between r/rj = 40 to 400. Now, however, the measured values of D, 
fluctuate slightly from one segment of data to another, exhibiting typical standard 
deviations of 0.05 for q = 4, 0.02 for q = 2 and 0.05 for q = -4. 

This procedure was repeated for other flows including a laboratory boundary layer 
a t  y/6 = 0.4 (with R, - 200), the wake of a cylinder a t  a free-stream speed of 
1500 cm/s, and the flow behind a grid. 

For the atmospheric surface layer (see table l ) ,  we evaluate the sum over all 
3.6 x lo5 data points available. This is still a relatively short segment of data because 
of the large integral scale of this flow. To illustrate the convergence of moments, we 
show in figure 21 moments evaluated as a function of the length of the data record. 
Stronger fluctuations of the moments can now be seen, this being so because of the 
much higher Reynolds number of this flow; yet, differences from one r value to 
another remain, for the most part, essentially independent of data record length. 
Figure 22 shows the relevant log-log plots for six different values of q. Here the 
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FIGURE 21. Moments of the locally averaged dissipation rate E,, as a function of the record length 
Y used for the averaging in the atmospheric surface layer for various r / v .  (a) q = 5 and (b) q = -5. 
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FIGURE 22. Log-log plots of [x (Er/Et)q]l'(*-l) as a function of r / v  for the flow in the atmospheric 
surface layer. 0,  q = 4; A, q = 2 ;  0, q = 0.6; x ,  q = -0.6; *, q = -2;  0, q = -4 .  Sohd . .  lines are 

linear least-square fit8 in the range r /v  = 10 to 30000. 

scaling range clearly extends over almost four decades and allows unambiguous 
determination of the scaling exponents. 

The average of all the results of many segments of data in all the laboratory flows, 
as well as the atmosphere, give a representative D, curve. The mean curves (and their 
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FIGURE 23. Moment exponents D, as a function of q. Circles, squares and dashed lines are the results 
from figure 17 obtained from fully converged moments. Diamonds (joined by the solid line) are the 
results of averaging over data segments of the order of a few tens of integral scales (see text). They 
represent the mean value of many such segments in a variety of flows. The error bars correspond 
to the standard deviation observed from different segments. 
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FIGURE 24. Multifractal spectrum f(a) obtained from Legendre transforming the results of 

figure 23. Symbols have the same meaning as in figure 23. 

standard deviations) for each type of flow were indistinguishable from each other 
within experimental accuracy. The mean curve for all the flows is depicted with 
diamonds in figure 23, where the error bars denote standard deviations resulting 
from fluctuations between one segment and another. The results are indistinguishable 
from those obtained from the long-term averaging in the range q > - 1. For larger 
negative q values, we are inclined to believe that the results from the short-term 
averaging are the more accurate ones because of the substantially better scaling 
observed. 

Next, the Legendre transform of (q- 1 )  D, is computed to obtain the multifractal 
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FIGURE 25. High-intensity tails of the probability density ofEJE, ,  plotted in log-log units. A linear 
behaviour at the tails would indicate a power-law (hyperbolic) distribution and divergence of high 
moments. Different symbols correspond to different box sizes as in figure 11. 
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FIGURE 26. High-intensity tails of the probability density of E,/E,,  plotted such that a linear 
behaviour at the tails indicates a lognormal distribution. Different symbols correspond to different 
box sizes as in figure 11. 

spectrum f ( a ) ;  a is obtained by differentiating (q- 1)D, using centred differences on 
the data of figure 23. The results, shown in figure 24, will be discussed in $4. 

3.3. Analysis of the tails of the distribution 
In this section the possibility of extending the D, curve to q > 5 is considered. To do 
this, one needs even longer data records for proper convergence. As will be seen 
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FIQURE 27. High-intensity tails of the probability density of EJE,,  plotted in log-linear units. 
Linear behaviour a t  the tails would indicate an exponential distribution. Different symbols 
correspond to  different box sizes as in figure 11. 

below, this is an inherently impossible task. Another possibility is to study in detail 
the tails of the distribution of (EJE,) in order to extend it on a rational basis to much 
higher values of (EJE,). 
dissipation in boxes of size 

Here N,, the number of 
(Er IEt ) j + l -  (Er /Et )j 

high-intensity tails 

. I .  I. 

Focusing on the probability density p(E,/E,) of the 
r ,  we note that it is related to the earlier histograms by 

boxes of size r ,  is equal to 9 / r ,  and A(Er/EJj = 

. We now wish to distinguish among several possibilities of the 
of p(E,/E,), ~ namely hyperbolic, lognormal, exponential and 

If the tails are hyperbolic (Mandelbrot 1974, 1989; Schertzer & Lovejoy 1985), the 
square-root exponential. 

distribution would obey 
P(ErIEt) - (ErIEt)-" (3.7) 

and yield straight lines of slope --w on log-log plots. For such distributions moments 
of order higher than w -  1 do not exist. The log-log plots of tails of p(E,./EJj, shown 
in figure 25 for five different box sizes, suggest that the tails decay faster than 
linearly on such plots (especially for the smaller r ) .  This behaviour is in agreement 
with the results of Anselmet et al. (1984) and Gagne (1987). 

Next, the lognormal possibility deserves analysis, even though it is asymptotically 
inconsistent with multiplicative processes. For lognormal distributions (Kolmogorov 
1962; Obukhov 1962), p(E,/E,) follows 

(3.8) 

where (Er/Et)peak is the value of (Er/Et) a t  which the distribution peaks. This would 
imply that plots of log { (EJE,) p(Er/Et)} vs. [log (EJE,) -log (Er/Et)peak]z should 

p(ErIEt) N (Er/Et)-' exp { - ~ ( r )  [log (ErIEt)--log (Er/Et)peak12>, 
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FIGURE 28. High-inteisity tails of the probability density of EJE,, plotted in logarithmic units as 
a function of (EJEJS. The linear behaviour at the tails clearly shows that the tails of the 
distribution are of the square-root exponential type. Different symbols correspond to different box 
sizes as in figure 11.  

yield straight lines. This is examined in figure 26, from which it appears that the 
measured distributions decay faster than lognormal tails, especially for the smaller 
boxes. 

A third alternative corresponds to exponential tails, 

P(E,/E,) - exp { -49 (E,/Et)l9 (3.9) 

for which semi-logarithmic plots of log @(Er /Et ) }  ws. (EJE,) should show linear 
behaviour. This is tested in figure 27. Here, unlike the two previous cases, it is 
apparent that for small box sizes the tails decay slower than the proposed 
distribution. This type of behaviour was also noticed by Gagne (1987) for velocity 
differences. 

Finally we examine the possibility that the tails of the probability density are 
square-root exponential. This possibility has been suggested by Gagne (1987) for 
velocity differences (also, see $2.7). For such tails, one has 

P(E,/E,) - exP{--a(r) (E, /E,) t+b(r) l .  (3.10) 

By plotting log [p(E,/E,)] ws. (E,/E,)i, one should observe straight lines of slope -a(r )  
and intercept b(r ) .  It is apparent from figure 28 that such linear behaviour indeed 
exists for all box sizes. The magnitude of the slopes a(r)  is a slowly decreasing 
function of r ,  and the intercept b(r)  increases with r .  The same behaviour is observed 
for the tails in the wake flow. We conclude that square-root cxponential tails are the 
best candidate for extrapolation. 

The actual extrapolation of the distribution p(E,/E,) is performed as follows. First, 
a(r) and b(r)  are estimated by linear least-square fitting through the seven right-most 
points of p(E,/E,). Then 30 more points along that straight line are added to  the 
distribution. (The extent of p(E, /E, )  is thereby increased by about 10 orders of 
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FIGURE 29. Log-log plots of [C (E,/E,)V]l"g-l) as a function of r / v  for several representative q-values 
between 5.5 and 10. The sums are computed using the distribution of (E,/E,) extrapolated 
according to square-root exponential tails. Circles are for the laboratory boundary layer and 
squares for the wake. Solid lines are linear least-square fits in the range r / v  = 30 to  300. Their slopes 
correspond to  Dv exponents obtained by this extrapolation procedure. ( a )  q = 5.5; ( b )  q = 6, ( c )  
q = 7 ,  ( d )  q = 8, ( e )  q = 9, ( f )  q = 10. 

magnitude, which is why we commented earlier that the required measurements are 
inherently impossible.) Then the moments are computed using 

c [EAYi)/fltl9 = x (W-W~,r,(E,/Et)i A ( w m i >  (3.11) 

where the sum on the right-hand side includes all points added to the distribution by 
extrapolation. This is repeated for q-values ranging from 4 to 10 for both the 
boundary layer and the wake. Figure 29 shows the resulting log-log plots used to 
obtain D, with the fits (again in a range r / y  = 30 to 300) indicated by solid lines. 
Figure 30 shows the D, curve, with points now extending up to q = 10. 

In  order to  find the asymptotic value of D, for q + 00, i t  is convenient to compute 
&(E,/E,)q as the product of the total number of boxes and the moan value of 
(E, /EJq according to 

i i 

X 

c lEr(%)/~tlq = N,<(E,/EJq) = N ,  1 (E,/-Qqp(E,/Et) 4W-Q. (3.12) 
i 
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FIGURE 30. Moment exponents D, as a function of q for both laboratory flows, where the  results for 
q > 5 are obtained from extrapolated moments. Circles correspond to  the boundary layer and the 
squares t o  the wake. The dashed lines represent Dg values obtained from different scaling ranges 
(same as in figure 17). The solid line is the D, curve obtained from purely square-root exponential 
tails (see text) ,  which asymptotes at a slow rate t o  a D, value of 0.12 indicated by the dot-dashed 
line. 
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FIGURE 31. Values of the intercept b ( r )  from the extrapolated distribution functions as a function 
of the box size r .  Circles correspond t o  the boundary layer and squares t o  the wake. Solid lines are 
fits in the range r / q  = 30 and 300. The slopes 0 (roughly the same for the two cases) are estimated 
to  be about 2.9k0.6. 

Replacing p(E, /E, )  by (3.10) and using N, = Y / r  one obtains 

(E,/E,)* = 2YZ729 + 2) eb(r)u(r)-2(4+')r - 1. (3.13) 

In order for this to obey a power-law with r ,  b ( r )  and a(r )  have to be of the form 

b(r)  = Olog ( r )  +c,  a(r )  - r+. (3.14) 
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FIGURE 32. Values of the slopes a(r)  from the extrapolated distribution functions as a function of 
the box size r ,  plotted in log-log units. Circles correspond to  the boundary layer and squares to the 
wake. Solid lines are fits in the range r / v  = 30 and 300. The (negative) slopes $ are estimated to 
be about 0.06+0.04. 
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FIGURE 33. Multifractal spectrum f ( a )  obtained from Legendre transforming the results of figure 
30. The solid circle at the lower left corner of the f ( a )  curve corresponds to  the square-root 
exponential behaviour with the measured values of 0 and $ (see text). The secondary scales are for 
the multifractal spectrum f,@) corresponding to  the three-dimensional situation, obtained by 
adding 2 to a andf(a) from the experimental results. The solid line and the error bars are the mean 
and standard deviation of the various results from short-term averaging. Circles, squares and 
dashed lines correspond to the analysis of very long records of data in moderate-Reynolds-number 
flows (boundary layer and wake). The arrow marks the location down to wheref(a) was computed 
without extrapolation. Lower values entail the extrapolation procedure. A detailed analysis of this 
curve is relegated to $4. 
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Substituting this into (3.13), and using (E,/E,)Q - r('J-l)%, we obtain 

D, = [2$(q+1)+@-ll/(q-1), (3.15) 

and in the limit, D ,  = 2q5. Figures 31 and 32 show b(r)  and log,,[a(r)] as functions of 
log,,[r/~] for both the boundary layer and the wake. The plots are consistent with 
a linear behaviour, substantiating relations (3.14). 8 and q5 are obtained from these 
plots by fitting straight lines through the data in the range r / r ]  = 30 to  300. The 
scatter, relatively large especially for the wake data, should be kept in mind when 
interpreting the results. The mean values are 

0 x 2.9f0.6, q5 x 0.06f0.04. (3.16) 
This implies that  D ,  x 0.1220.08. Relation (3.15) is shown as the solid line in figure 
30, and the dot-dashed line indicates the asymptotic value D,. 

Finally, f ( a )  is computed from the D, exponent obtained from the extrapolation 
procedure. The results are shown in figure 33. The f ( a )  curve was computed without 
any extrapolation of the distributions (figure 24) down to the arrow. Lower values 
are the results of extrapolation. 

Asymptotically for q+ m ,  it  is clear from (3.15) that 

a(m)  = D ,  = 2$ (3.17) 

and f [ a ( ~ ) l =  -pq5+e-i]. (3.18) 

In the last step, (2.20) has been used. This asymptotic state is shown as the filled 
circle in figure 33 for the estimated values of q5 and 8. The termination of thef(a)  
curve a t  that  point arises because of the rapid fall-off of the square-root exponential 
tail. A detailed interpretation of the f ( a )  curve is given in the next section. 

4. Discussion of results and comparison with models 
4.1. Results 

The curve f3(a3) corresponding to the three-dimensional situation is obtained 
according to (2.34) by adding 2 to  the values of a and f ( a )  obtained from one- 
dimensional cuts (figure 33). For f3(a) > 2, the curve seems fairly symmetric, with a 
maximum occurring a t  a = (a) = a(q = 0) x 3.13 and f3(a),rtx = 3.0. The curve has 
unit slope (or a = f3(a))  a t  the point a(q = 1) = f,(a) = Dd=-B,q=l x 2.87, this being the 
dimension of the set where all of the dissipation is concentrated asymptotically 
(Sreenivasan & Meneveau 1988). As remarked by Chhabra & Jensen (1989), D, is the 
dimension of the measure-theoretic support of the measure. On the other hand, 
f,(a, = A = 3) x 2.96. This is the dimension of the set where all the singularities 
(a, c 3.0) of the dissipation are located (Sreenivasan & Meneveau 1988). The fact 
that f3(a3) is larger than f3[a3(q = l ) ]  (which is true quite outside of experimental 
uncertainty) means that the mean dissipation is dominated by some set where the 
dissipation is singular (but not extremely so!).  This conclusion may have some 
bearing on closure models. 

By computing the second derivative of 7(q) = (q- 1)  D, at q = 0 (using centre 
differences on the data obtained from the short-term averaging) one obtains that 
d27/dq2 w -0.2620.03. From (2.23) we obtain the intermittency exponent ,u x 
0.2620.03. Also, remembering from the previous section that D, x 0.76k0.02 (for 
d = l),  we obtain that p' = d - D ,  x 0.24f0.02, comparable with ,u within ex- 
perimental accuracy. The small difference between the two results arises because of 
the multifractal nature of the dissipation. 
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FIQURE 34. Scaling exponents f;, of velocity structure functions. Triangles (and error bars) are from 
experimental results by Anselmet et al. (1984). The other symbols, dashed lines and the solid line 
are the results of figure 30, related to 6, via (C 11). Both sets of results agree within experimental 
uncertainty. 

It is now also possible to compare these results to those of Anselmet et al. (1984) 
on the velocity structure-function exponents. To do this, we compute f ,  from our D, 
curve using relation (C 11) of Appendix C. This relation assumes that (m7) and the 
cube of Aur = lu(z) -u(z+r)l have the same scaling laws. There is no direct evidence 
for this, the only rigorous result from the Karman-Howarth equation being the 
equality of their mean values. The results of the comparison are shown in figure 34, 
The present results fall a little lower for high moments but the agreement is quite 
good considering the overall experimental uncertainty. Furthermore, using the 
asymptotic results corresponding to  the square-root exponential tails, one obtains 
for high p the result that 

which depends linearly on p with a slope of iq5 x 0.04. This is depicted as solid line 
in figure 34. 

4.2. Comparison with models 

In  this section, these experimental results are compared to  models summarized in $2. 
Figure 35(a, b )  shows the present experimental results as small circles. The non- 
intermittent theory of Kolmogorov (1941), the /3-model with D = 2.87, and Nakano & 
Nelkin’s (1985) temporal wavepacket model (with z = 0.84, Nakano 1988b) are 
depicted using large symbols in ( a )  for thef(cc) curve, and different lines in ( b )  for the 
D, curve. The D, curve in (b )  corresponds to the three-dimensional case by using 
(2.34). The lognormal model withp = 0.26 is shown by the dashed line in both ( a )  and 
( b ) .  As expected from the analysis of the tails of the individual distributions in $3, 
the experimental f(a) falls off faster than for lognormality. 

The solid lines in figure 36(a, b correspond to the random /?-model of Benzi et al. 
(1984) with their proposed binomial distribution of the random variable /3 (see 
Appendix C) :  

From (C 9) it can be shown that D, = 3-P, so that a D, of 2.87 selects P = 0.13. (P  
was called x in Benzi et al. 1984.) This model assumes that sheet-like structures are 

(4.1) f ,  = gq5p+2q5+0, 

p(P)  = P8(/3-0.5) + ( 1  -P) (p- 1 ) .  (4.2) 
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FIQURE 35. (a) Comparison of the f3(ct) curve from the experimental results (small circles and 
error bars) with several cascade models. The circle a t  f = a = 3 is the original non-intermittent 
Kolmogorov (1941) theory. The square a t  f = a = 2.87 corresponds to the fractally homogeneous 
/I-model of Frisch et al. (1978). The two triangles correspond to the temporal wavepacket model 
(Nakano 19886). The dashed line is a parabola corresponding to the lognormal distribution with 
p = 0.26. (3) Comparison of the D3,# curve from experimental results (small circles and error bars) 
with several cascade models. The dotted lines at = 3 and 2.87 correspond to the Kolmogorov 
(1941) theory and the /I-model respectively. The solid line corresponds to the temporal wavepacket 
model (with z = 0.84, Nakano 19883). The dashed line is tangent to the measured D3,* curve at 
q = 0 corresponding to the lognormal distribution with p = 0.26. 

created with probability 0.1 3, while space-filling eddies are generated with 
probability 0.87. The model always yields f ( ~ l ) , ~ ~  < 3.0 (in this case 2.9), stemming 
from the assumption that some eddies receive no dissipation. As seen in figure 36 (a ) ,  
the model works reasonably well for the left-most part of the f(a) curve (high- 
intensity dissipation) or a t  the higher moments. There is some disagreement around 
the peak and left part of the distribution, which is highlighted for the moment 
exponents q < 0 in figure 36 ( b ) .  

In  figure 37 (a, b )  we illustrate some results of the a-model of Schertzer & Lovejoy 
(1985). Here the random multipliers M are assumed to have a distribution 

p(M)  = PS(M-M,) + (1 -P) S(M-N,) .  (4.3) 

Forcing the curve to  pass through the measured values of a,  = 2.12 andf(a,) x 0, 
one obtains thatM, = 2-=m x 0.23 and P x 8-l. M ,  is obtained from the normalization 
condition. The resulting f(a) curve is shown as solid line in figure 37(a). The 
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FIGURE 36. (a) Comparison of the measured f3(a) curve (small circles) with the prediction of the 
random P-model of Benzi et al. (1984), using a binomial distribution for /3 and fitting it at the point 
where f = a = 2.87. ( b )  Comparison of the measured D3,* curve (small circles) with the prediction 
of the random P-model (solid line) with the same distribution as in (a) .  

corresponding D, curve is shown in figure 3 7 ( b ) .  Since this model involves two free 
parameters, there are other possibilities as well. As mentioned in 82.7 and discussed 
in detail in Appendix A, this model can also produce divergence of moments on linear 
cuts. From (A 8), we require Mo > a for this to occur. For instance, the choice Mo = 
0.26 with P = 0.4671 produces divergence of moments for q 2 Q on the linear cuts, 
which is the critical value qcr proposed in Schertzer & Lovejoy (1985). Thef(a) and 
D, curves corresponding to  this choice of parameters are shown by the dashed lines 
in figure 3 7 ( a )  and ( b )  respectively. Notice that D3, ,  = 2 or D,, ,  = 0 when q = Q .  
Other combinations of Mo and P giving divergence of moments of order Q can be 
readily found. However, since this always implies that  the curve crosses the axis 
a = 2 with a slope smaller than 8 (see Appendix A), this is not compatible with present 
experimental results. I n  other words, since the D3,,  curve must go through both 
Do = 3 and Dg = 2, it will fall far from observations (see figure 37b) .  Nevertheless, the 
model can be made more general by relaxing the condition of divergence of a specific 
moment on the linear cut. I n  fact, we shall see below that by assuming that P = 0.5, 
one can obtain good fits to the manifest part of f (a ) .  

The solid line of figure 38(a) in the range f3(a) 2 2 corresponds to  the binomial 
model described in $2.8, with p ,  = 0.7 (= 4Mo). The agreement between the data and 
the model is quite good in the range f3(a) >, 2. But owing to the assumption that a t  
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FIGURE 37. (a) Comparison of the measured f,(a) curve (small circles) with two out of several 
possibilities arising in the a-model of Schertzer & Lovejoy (1985). The model assumes that the 
multipliersM can adopt two values with different probabilities, and has two free parameters. They 
can be selected for instance by forcing the curve to go through the lower-left most point of the curve 
(solid line), or to produce divergence of the $-order moments on the linear cuts (dashed line). (b) 
Comparison of the measured I),,* (small circles) with the outcomes of the a-model. The legend is 
the same as in (a). 

every stage the newly generated eddies receive exactly the same amount Mo = 9, or 
M ,  = t( 1 -p , ) ,  both with probability t ,  this model does not produce singularities 
distributed on sets of dimension less than 2:  singularity sheets are the sparsest sets 
that can be produced by this type of model. This can be seen in figure 38(b),  where 
the D, curve agrees with experiments for q-values between - 3  and 4. Higher 
moments emphasize singularities withf,(a) < 2, and give lower values for D3,Q than 
the binomial model. 

To model the entire range of f,(a) > 0, one can generalize the binomial model to a 
'multinomial' one in which the number of free parameters can be made arbitrarily 
large. This restricts the usefulness of such a procedure. For completeness, we observe 
that (e.g.) a probability distribution where the multipliers can take on three distinct 
values with different probabilities according to 

p(M)  = Po6(M-Mo)+PlS(M-M,) +P2S(M-M2), (4.4) 

produces, with Mo = 0.235, M ,  = 0.119, M ,  = 0.052, Po = Q, P, = f and Pz = +, the 
dashed lines of figure 38 (a,  b )  - in good agreement with experiments. 

Finally, it should be noted that the probabilistic model of Chhabra & Sreenivasan 
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FIGURE 38. (a )  Comparison of the measuredf,(a) curve (small circles) with a binomial distribution 
(solid line) of the multipliers (with M,, = p ,  = 0.7 and p ,  = 0.3),  but  each value occurs with the 
same probability, $. This model (designated the p-model in Neneveau & Sreenivasan 1987 b )  agrees 
well with the data  in the  range!&) 2 2. If the multipliers are allowed t o  assume three values, each 
with different probabilities, i t  is easy to  fit the entire curve (e.g. the dashed line shows such a fit). 
(b )  Comparison of the measured D3,q curve (small circles) with the p-model (solid line) and with its 
multinomial extension (dashed line). 

(1990) - to which we have already referred - agrees well with the measuredf(a) curve 
over the entire range. 

5. Conclusions 
The main conclusions are now summarized. The observation that the dissipation 

field E' has a multifractal distribution supports the notion of a self-similar 
multiplicative fragmentation process occurring in turbulent flows. Using concepts 
from the theory of random curdling, it was shown that one could in principle use 
linear cuts to  obtain information on f 3 ( a )  of the three-dimensional distribution. We 
point out that recent analysis in three dimensions of direct numerical simulations of 
homogeneous shear flows (Deanc & Keefe 1988) and isotropic turbulence (Hosokawa 
& Yamamoto 1990) give f(a) curves that are in good overall agreement within 
experimental accuracy. The only difference is that they show a slightly smaller 
degree of intermittency than does our mean f ( a ) .  Quantitative results on high-order 
moments are not very accurate because thc scaling range is modest a t  moderate 
Reynolds numbers, but are of sufficient quality to highlight much of the high-density 
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tail of f 3 (a ) ,  with an error margin of about f 15 %. It was found that the probability 
distributions of the dissipation rates exhibit square-root exponential tails. By 
extrapolating this behaviour, we were able to infer the asymptotic values of moment 
exponents and the f ( a )  distribution. The asymptotic value of D, for q+ appears 
to be somewhat larger than zero on the linear cuts which, according to Appendix A, 
implies that  there is no divergence of moments. This result is based on laboratory 
flows only. For the atmospheric flow, the number of points needed to explore this 
issue satisfactorily can be shown to be prohibitively large. If we wanted to  ‘capture’ 
singularities with f3 (a)  - 0 using a flow where L / q  - lo4 (as in the atmospheric flow), 
we would need ( points - several years of data acquisition ! Perhaps the only way 
of obtaining useful results there is via the multiplier method used by Chhabra & 
Sreenivasan (1990). This method takes explicit advantage of scale similarity a t  
various levels and averages information over them. The method also gives D, > 0. 

The present results are related to  inertial-range exponents such as structure- 
function exponents, and are essentially the same as previous results of Anselmet 
et al. (1984). We emphasize that this means that the inertial-range scaling can be 
deduced (at  least to a good approximation) by examining the scaling of the 
dissipation rate e when averaged over inertial-range boxes. 

Comparing measurements with several models of intermittency , i t  was concluded 
that scaling models with single exponents, lognormal and P-models are not 
satisfactory in general. I n  this sense, f ( a )  is a useful characterization of intermittency, 
since it permits one to  establish the validity of cascade models. On the other hand, 
it was shown that simple versions of random curdling (binomial or multinomial 
models) could account for observations in the manifest part of the !(a) curve. 
However, owing to the degeneracy of the multifractal formalism (Feigenbaum, 
Jcnsen & Procaccia 1986; Chhabra et al. 1989) one cannot claim that the turbulent 
fragmentation process actually proceeds according to  these simple models, but it is 
worth noting that spatial fluctuations of E can be well quantified by the multipliers 
0.7 and 0.3. These numbers have to be understood in the following sense. 
Dynamically, we lack a convincing model for the spatial characteristics of the flux 
of kinetic energy to small scales. If such a process were to occur, i t  must exhibit 
fluctuations - this being the origin of intermittency. The multipliers 0.7 and 0.3 
correspond to the simplest possible fluctuations that will reproduce most of the 
observations. Indeed, all the practically important moments are sufficiently low that 
they can be obtained by knowing the positive part of f ( a )  on the linear cuts only. The 
merit of the simple binomial model is that, unlike lognormality, its high-order 
moments are consistent with a multiplicative process, even though it reproduces the 
observations only over single ‘typical ’ cascades on the linear cuts. To reproduce the 
more infrequent events occurring on sets of dimension smaller than two (cor- 
responding to the latent part o f f (a ) ) ,  one needs to invoke more general processes such 
as the multinomial process of $4 or the probabilistic model of the type discussed by 
Chhabra & Sreenivasan (1990). 

It is important to stress that the multifractal nature of the dissipation implies a 
non-trivial spatial structure, which can be seen for instance in the behaviour of two- 
point correlation functions of multifractals. It was shown (Meneveau & Chhabra 
1990) that there are interesting spatial correlations in the local exponents a, 
stemming from the fact that  the measure a t  two nearby points will share more 
common ‘history ’ of the multiplicative process than those that are far apart. This 
reasoning can be made precise (Cates & Deutsch 1987 ; Menevcau & Chhabra 1990), 
and might lead to improved statistical treatment of the fine-structure of turbulence. 
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It is of interest to highlight other questions concerning the multifractal description 
of turbulence. For instance, the degree of correlation existing among joint 
distributions of intermittent quantities in turbulence, such as the dissipation of 
kinetic energy and the dissipation of passive scalar fluctuations, or the squared 
vorticity, can be well described by extending the multifractal formalism to more 
than one variable (Meneveau et al. 1989). Another interesting problem addressed in 
Ramshankar (1988) and Tong & Goldburg (1988) concerns the behaviour of 
multifractal scaling exponents during the transition to fully developed turbulence. 
In addition, the multifractal nature of the dissipation has implications for the 
number of degrees of freedom (Meneveau & Nelkin 1989) as well as for the fractal 
dimension of interfaces (Meneveau & Sreenivasan 1990) in turbulent flows. Another 
interesting problem is the extension of the multifractal formalism to non-isotropic 
fields (Schertzer & Lovejoy 1985). 

Finally, we note that all these models involved the binary base (i.e. b = 2). Other 
bases can be shown to make no difference to the scaling properties embodied in the 
f (a)  curve. However, these models assume that all offspring are of the same size. It 
turns out that fluctuations in the size of the new pieces created during the cascade 
also typically lead to multifractal distributions (this is what typically leads to 
multifractal measures of attractors in phase space). The statistics of such fluctuations 
can, under certain conditions, be related to  expansion and contraction rates of fluid 
elements. (For a discussion of this approach in the context of passively convected 
vector and scalar fields, see Finn & Ott 1988; Ott & Antonson 1989.) In  turbulence, 
we suspect that a mixture of fluctuating length and measure multipliers is the most 
likely possibility. As mentioned before, this is impossible to discern among the 
plethora of possibilities using thef(a) curve alone (Chhabra et al. 1989; Chhabra 1989. 
It is interesting to recall the demonstration of Chhabra et al. that it is in general not 
necessary to consider variation in both length and measure multipliers.) Other data 
processing techniques such as wavelet transforms (Grossmann & Morlet 1984 ; 
Everson, Sirovich & Sreenivasan 1990 ; Meneveau 1990), detailed flow visualization, 
analysis of full numerical simulations, etc., may go some way to clarifying dynamical 
details leading to small-scale intermittency. 

We wish to thank A. B. Chhabra, R. V. Jensen, B. B. Mandelbrot and M. Nelkin 
for many stimulating discussions. We are especially thankful to Benoit Mandelbrot 
for drawing attention to the notion of negative dimensions and their relation to his 
early work. This work was supported by DARPA (URI) and AFOSR. 

Appendix A. Sections through fields generated by random curdling 

I n  this appendix we examine the relation between the multifractal features of d-  
dimensional intersections through intermittent fields generated by random curdling 
in A-dimensions. We start by noting that densities of the measure, or averages of the 
dissipation rate, are the same in a given box, whether one obtains it in the A-  
dimensional domain, or on a d-dimensional cut. This also holds for the ratios of 
densities. Therefore, the ratios of the total measure or energy flux M on the A -  
dimensional domain (denoted henceforth by M(A)) can be related to the ratios of total 
measure M,, on the d-dimensional cut by equating the corresponding densities 

M,,, bd = bA. (A 1) 
Therefore, whenever the multiplier in a A-dimensional domain is M(,,, the multiplier 
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FIQURE 39. (a) D3.q vs. q for the multiplicative process in three dimensions using the exponential 
distribution of multipliers. The mean of M(,, is and the minimum and maximum values it can 
acquire are < 
M(d,  < t and zero otherwise. D3,q is computed according to D3,* = log,[8(Nq)]/( 1-9). (b) Dl,g  for a 
d = 1 dimensional cut through the three-dimensional process, obtained by subtracting 2 from (a) 
(see text). The dashed line shows the result that one would measure from an 'experimental ' one- 
dimensional cut, where only the last stage of the cascade is known (see end of this section). 

and t respectively. The distribution is p(M,,,) - 42.958exp [ - 15.89361M(,,,] for 

M(d)  on the d-dimensional cut is M(A, bA-d. One now considers a multiplicative process 
on a d-dimensional domain with multipliers given by M(d), where M!,, has the same 
statistics as M(A) bA-d. In particular, the condition of normalization implies that 

(M(d)  ) = b-d 9 (A 2) 

but the local condition of conservation is relaxed on the cut. Therefore, one now 
concentrates on a d-dimensional, non-conservative, multiplicative process with base 
b and multipliers M(d)  obeying the properties (A 1) and (A 2). 

We focus again on EdYr,  the total dissipation contained in a d-dimensional box of 
size r .  As before, we have 

where it is presumed that the cascade stops once a box size v / L  is reached after n 
stages. The total dissipation in a box of size r / L  after the cascade has proceeded k 
steps only, will be given by a certain sequence of multipliers M(d)  according to 

(A 3) r / L  = bPk,  v / L  = b-", 

k 

= n M ( d ) , j  = EA,,/EA~'-~. (A 4) 
1-1 

From this it follows that the D ,  exponents, as well as a and f(a) of the distribution 
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FIGURE 40. ( a )  f s (a )  of the measure in three dimensions obtained by applying the Legendre 
transforms to figure 39(a) .  (b) f , (a)  for a one-dimensional cut through the measure of ( a ) ,  obtained 
by subtracting 2 t o  both a and f (a)  of (a) .  Regions A, B and C correspond to manifest, latent and 
virtual singularities (see text). The arrow shows the limit off(a) corresponding to  t,he dashed line 
of figure 39(b) .  The point wheref,(a) reaches this limit has a tangent that goes through the origin. 

in d-dimensions are simply related to those in A-dimensions according to (2 .34) .  Thus 
by knowing the exponents in A-dimensions, one can obtain the corresponding ones 
in d-dimensional cuts, but the question of more practical interest is the inverse 
problem of obtaining the exponents in the A-space from those in the d-dimensional 
cut. 

Before considering this, a specific example might be helpful in illustrating the ideas 
presented so far. Let us consider a process in three dimensions (A = 3 )  and with base 
b = 2 ,  where the multipliers obey the following distribution : 

The constants A and B are obtained by normalizing P ( M ( ~ ) )  and requiring that 

Figure 39(a) shows the D3,q curve in three dimensions obtained by applying (2 .31)  
to this process. Figure 39(b )  shows the Dl ,q  curve for the corresponding process on 
a one-dimensional cut (d = 1) obtained from (2 .34 ) .  Similarly, figure 4 0 ( a )  and 4 0 ( b )  
show respectively thef3(a) curve in three-dimensions (A = 3 )  (obtained from the D3,q 
curve using the Legendre transforms), and thef,(a) curve on a one-dimensional cut 
(d = 1 )  through the three-dimensional distribution ; (2 .34)  has been used again. Since 

( M ( ~ ) )  = 2-3. 
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Mmfn = A, we have that D3,-m = a3,,,, = logz[Mmin]-l = 4. Also, since M,,, = +, we 
have that D3, oo = ag, min = log,[Mm,,]-' = 1. Since M is never zero, D3, ,, = A = 3.0. 
Another interesting property arising from the continuous probability density p ( M )  is 
that the probability of M being exactly Mmin = is zero. Both f(amin) 
and f(a,,,) are related to the probability of M being exactly M,,, or Mmin a t  evey 
step in the cascade according to f3 (a)  = log,[P(M)] +A. This shows that the value of 
f3(a)  tends to - 00 at the tails of the curve, consistent with figure 40(a). 

Following Mandelbrot (1989), i t  is convenient to organize a more detailed 
discussion of f l (a )  into three separate cases; whether all or some of them occur in 
practice depends on the precise statistics of the multipliers M .  

Manifest Singularities: This corresponds to a range of a-values (a now stands for 
the singularity strength on the d-dimensional cut, i.e. ad) such that f d (a )  2 0, or 
f d (a )  2 A - d .  This is shown as region A in figure 40(b). In this range, fa(.) can be 
interpreted as a dimension, and there are no problems when going from d dimensions 
to A.  Also, a single cut, or a single realization of the cascade in d dimensions will 
typically capture all the singularities that are densely distributed such that f d ( a )  > 
A -d. This is obvious sincefd(a) > 0 means that there is more than one box where a 
has a certain value. This number becomes larger and larger as r decreases, or as the 
level k increases, and remains of order unity if fd(a) = 0. 

Latent Singularities: This corresponds to a range of a > 0 where f d ( a )  < 0 or 
f d ( a )  < (A-d). This region is denoted by B in figure 40(b).  The condition fd(a) < 0 
means that there is typically less than one box in a typical sample with those values 
of a. Since the formulation is probabilistic, it is convenient to write that the 
probability of a occurring in a band da  (dropping normalization constants) is 

or M,,, = 

Z7,(a) da - bPkdbkfd(=) da. (A 6) 

This is smaller than bwkd whenever f,(a) < 0 (when a is within region B). Therefore, 
a typical d-dimensional cut will miss these a-values. However, since n,.(a) da is small 
but non-zero, if one takes many cuts or many realizations of the cut, one will 
inevitably encounter such rare a-values. One consideration of interest in $ 3  is the 
number of cuts one has to take to be able to detect an a-value whose f A ( a )  = 0, or 
f d ( a )  = d-A. According to (A 6), the probability of a box having such an a is 
h',(a) da  - tkd da. Since there are bkd boxes on a single d-dimensional cut, the 
probability of encountering such a value on the entire cut is - bk(d-A).  It follows that 
one would need - bk(d-d) such cuts to have a probability of detecting such an U-value 
of order one. Therefore, latent singularities can be detected by increasing the number 
of cuts a t  a given resolution r = b-k. It is important to realize that increasing the 
resolution r or k does in principle decrease the probability of encountering the rare 
events on a d-dimensional cut. Also, note that, in the example, there are latent 
singularities even on the A = 3 dimensional domain, meaning that the high values of 
M occur so rarely that even a single realization of the three-dimensional 
multiplicative process will not always contain the most intense singularity 
corresponding to a3,,in = 1. 

Virtual Singularities: This is the region shown as C in figure 40(b). Here ad < 0 or 
ad < d - A .  Since f ( a )  < a always, here f d (a )  c 0 also. ad c 0 means that there are 
points where 

E d , J E d  = (b-k)" < Ed,JEd  = (b-(k+'))a, 

where r l /L  = b-' is larger than r z /L  = b-('+'). This means that the dissipation in one 
of the offspring is larger than the total dissipation received by its predecessor. 
Naturally, this is possible only if the cascade is non-conservative in d-dimensions. 

(A 7) 

16 FLM 224 
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Another interesting range of singularities appears when Dd, ,  < 0, corresponding to 
(C E$,r l )  < (C E&,) whenever rl > r2.  The critical value of q a t  which this happens 
is denoted by qcr, and from (2.31), we see that the condition for Dd, ,  = 0 is 

( M : J ~ )  = bPd. (A 8) 

From figure 39(a) we see that Dd, ,  = 0 occurs near qcr x 7 for the example (A 5). 
Following Mandelbrot (1974), we note that 

This means that as soon as a multiplier M(d) becomes larger than 1, there will be some 
value of qcr above which D d , ,  < 0 because Dd,q+ao = 0 implies that M,, = 1. 
Mandelbrot (1974) shows that the condition (A 9) is both necessary and sufficient for 
the existence of a qcr. 

Returning to figure 39(a), Mandelbrot (1984, 1989) and Schertzer &, Lovejoy 
(1985) have remarked that one can now define the exponents DA,,  as the dimension 
of a set S(D,) which, when used to  intersect the original measure in A dimensions, 
will produce a qcr = q. The interpretation of D, as a dimension is thus justified. 

We have so far illustrated the relationship between the exponents on different 
dimensions A and d .  It was shown that Dd,,  can become negative, at least in 
principle. The question now is whether this is possible in practice. At this point i t  is 
important to  realize that if one were measuring Ed,r  from an experiment where the 
cascade had proceeded down to the nth cascade level (box size T/L  = b-n) ,  one would 
instead measure Ed, as the sum of all Ed, 'I contained in the original box of size r /L .  
In that case one would obtain 

If the cascade was conservative in d dimensions it is easy to show that this would 
always be equivalent to (2.28), i.e. 

For non-conservative cascades, let us call this ratio Q,,,. It is a fluctuating quantity 
that varies from box to box, but it is straightforward to prove that (Q,,,) = 1.  
Other interesting properties of 52 are that Q,,, = 1 always, and that 

locally. If one now measures the D,  exponents from a d-dimensional cut one obtains 
(combining (2.28) and the definition of Q,, ,) : 

Using the assumption that the M on different cascade levels are uncorrelated, and 
using the recursion relation (A 12), one obtains, after some manipulations, two 
asymptotic scaling regimes for (C E d , r / E d ) q ) .  The precise cross-over depends on the 
statistics of M, or on the D, values. If 

(M:d)) < b-d 9 
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one obtains (for n % k) 

(A 14) 

so that the DQ,d measured from the non-conservative cascade agree with the Dq,d 
that one would obtain from the additive relations (2.34). On the other hand, if 
(M7d)) > td, one obtains 

The cross-over occurs at (M?d,) = b-d, which happens exactly when DQ,d = 0, or 
when q = qcr. Also, for q > qcr, (c (Ed, , /Ed)')  no longer depends on r / L ,  but is a 
constant for a given q/L. (This constant diverges with q/L since D d , ,  c 0.) 
However, according to (A 15), if we were to measure Dd, ,  from the measure a t  step 
n by using boxes of varying sizes r /L ,  one would obtain the result that Dd,' = 0 
(Meneveau 1989) for all values of q > qcr. (This is valid asymptotically for n % k, or 
q 6 r . )  

The dashed line in figure 39(b) corresponds to Dd,* = 0 for q > qcr which would be 
the result of measurements on the d-dimensional cut performed after the cascade has 
proceeded to some high number of steps. The arrow in figure 40(b) shows the 
corresponding position on the fd(a)  curve. 

Appendix B. Intermittency exponents 

generating function 

and using the definition (2.8) of a with unity prefactor, we see that 

Let us consider moments of the local scaling exponent a itself. By considering the 

G(q) = ((Er/EL)'>, (B 1)  

(B 2) 

The spatial average ( a )  in (B 2) is taken over all non-empty boxes. On the other 
hand it follows from (2.14) that 

G(q) = (r/L)T(Q)+Do, (B 3) 

and evaluating the derivatives of G(q) a t  q = 0, we obtain 

= d7(q)/dqlQ-o = (B 4) 

(B 5 )  

(B 6) 

dG(q) /dq lQ-O = In (r/L) 

d2G(q)/dq21,_, = (In [ r /L] )2(a2)  = (In [r/L])2[(ln [ r /L] ) - l  d27/dq2 + (d~/dq)~],_,. 

From this it follows that gz, the variance of a,  is given by 

gz = ((a-cz,)2) = (In [r/L])-' d27(q)/dq21,,,. 

We conclude that for a given 7(q) = (q- 1) D, curve, the variance of the variable a is 
a function of r ,  and decreases as r decreases. For future convenience, we now focus 
on the variance of In (Er /EL) .  Since In (Er /EL)  - a l n  ( r / L ) ,  it is clear that 

a;nE = - d27(q)/dq21,=, In ( L / r ) .  (B 7)  

Therefore, for multifractal measures, the variance of the logarithm of the measure in 
a box of size r increases with decreasing box size. Comparing this result with (2.22), 
it  follows that the intermittency exponent is given by 
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Taking higher-order derivatives of G(q), i t  is easy to show (Meneveau 1989) that the 
nth centred moments of a (and of ln(E,)) are given in terms of higher-order 
derivatives of 7(q ) .  

We remark that in Meneveau & Sreenivasan (1987a), we had defined an 
intermittency exponent in terms of the slope of D, a t  q = 0 as ,u = -2 dD,/dql,_,. 
Around q = 0, d2D,/dq2 is usually quite small so that both definitions are numerically 
close, but conceptually not equivalent. We employ in this paper the dcfinition of p 
given in (B 8). 

Appendix C. Relation between the multifractal description and early 
cascade models 

Early cascade models can be shown to correspond to  special cases of multifractal 
distributions. The smooth non-intermittent character of Kolmogorov’s (1941) theory 
implies that 

for all q.  This means that 8 i s  space filling with no intermittency. Alternatively, we get 
from (2.20) and (2.21) that the f ( a )  curve degenerates to the point a3 = 3, f ,(a) = 3. 

On the other hand, recalling that a is proportional to In (E, /E,)  and that f(a) is 
proportional to the logarithm of the probability density function of a or In (E,) ,  it is 
easy to realize that f(a) must be parabolic if the distribution of In (E,)  is Gaussian. 
This corresponds to the lognormal model. Denoting by mlnE and gfnE the mean and 
variance of In @ , / E L )  respectively, it is straightforward to show (Meneveau & 
Sreenivasan 1987 a )  that the lognormal distribution corresponds to 

(C 1) D g . 3  = 3 

f(a) = - (a - a,)2/(2,uu)> (C 2) 

where a. = (a) = m,,,[Zn (r /L)]- l ,  ,u = gfn,[ln (L /r )] - l .  (C 3) 

For lognormal distributions, the conservation of the measure imposes a relation 
between its mean and variance, which can be expressed from (2.20) as a relation 
between a. and ,u by requiring that 

f = a when af/aa = q = 1.  (C 4) 

The result is that a,-d = l&. (C 5 )  

Applying the Legendre transforms to (C 2), we obtain the 7 ( q )  curve for lognormal 
distributions to be 

7(q )  = (q- 1 )  [d+ (P/2)Pl> (C 6) 

giving D, = d - b q .  (C 7 )  

It is clear that moments of order q higher than (2d)/,u become negative. According 
to (2.15), if D, were negative, C (E,/E,)q would increase as the box size decreases, 
which is not possible in practice. Given that f ( a )  is related to the logarithm of the 
probability density of the dissipation normalized by In ( r / L ) ,  as one proceeds to 
smaller r-values (or more steps in the cascade) it is continually emphasizing the tails 
of the distribution for which the central-limit theorem does not hold. As more steps 
are taken into account (larger n) ,  one would expect lognormality to become a better 
approximation over larger and larger regions of the distribution of E,, yet not SO 

for the logarithm of the distribution divided by In ( r / L ) .  Thus the central-limit 
theorem does not apply for scaling exponents in the multifractal analysis, even 
asymptotically. 
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Despite these inadequacies of lognormality, it works well for low-order moments 
or the central part of the f ( a )  curve. This is because any reasonably smooth f ( a )  curve 
is well approximated around its maximum by its second-order expansion. Of course, 
the value of ,u (related to the curvature of f ( a )  a t  its maximum) depends on the 
variance of the multipliers M j ,  and cannot be determined from central-limit-type 
arguments. Thus, any general multifractal distribution has a 'universal ' parabolic 
shape near the maximum of f ( a )  where the central-limit theorem applies, but the tails 
depend strongly on the details of the distribution of the multipliers. 

For the /?-model one obtains 

Dq = o(/?) = d + log, /? (C 8 )  

independent of q. It is easy to show thatf(a)  consists of a single point a t  a = f ( a )  = 
I)(/?) for this model. One shortcoming of the /?-model is that the dissipation has 
exactly the same value in all non-empty regions. The random /?-model (Benzi et al. 
1984), whose physics of eddy breakdown is basically the same as in the standard p- 
model (0 < p < i ) ,  allows for fluctuations in the intensity of the (non-zero) values of 
the dissipation. For this model, one obtains 

leading to a non-trivial f (a )  curve whose maximum is less than d. 
The 7(q)  or f ( a )  curves of the dissipation field can also be related to other inertial- 

range exponents if one estimates the local flux of kinetic energy a t  a particular scale 
r by and assumes this to have statistics similar to e,. It follows (Meneveau & 
Sreenivasan 1987 a )  that the nth-order velocity structure functions obey 

where 

For n = 2, (C 11) can be shown to imply (with d = 3) that  the energy spectrum has 
the form 

@(k) k-[$W-D$/31, (C 12) 

which, for any D; < 3, is steeper than the -! spectrum predicted by Kolmogorov's 
1941 theory (Mandelbrot 1976). 

Appendix D. Methods for evaluating velocity derivatives 
This appendix contains a summary of the sensitivity studies with respect to 

different methods of evaluating the velocity derivatives used to compute E'. We 
compare typical log-log plots of (E,/E,)q for q = 2 and -2 where E' is obtained 
using the simple method (3.2) as well as three different alternatives. We apply these 
different methods to  a segment of atmospheric data consisting of 80000 points. 
Figure 41 shows plots of log,,[C (Er/Et)Q]1/(4-1) vs. log,,[r/~], where E, has been 
computed using the different methods of differentiation. Circles correspond to (3.2), 
and squares to 6' evaluated by taking derivatives as differences over distances larger 
than the sampling interval, namely over five data points as E' = [ ~ ( t ~ + ~ ) - u ( t ~ ) ] .  The 
next method consists in evaluating the derivatives using a differencing scheme of 
fourth-order accuracy according to E' = [8u(t,+,) - 8u(t,-,) -u(t6-J +u(ti-,)]. The 
results are shown as triangles in figure 41. Finally, we employ a smoothing technique 
to the velocity signal, which consists in least-square fitting a parabola through five 
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-6  @ I I I 

points around every data point of the velocity signal. Subsequent data processing 
was done according to (3.2). The asterisks show the results of that procedure. 

As is obvious from figure 41, the curves are a t  most shifted by small amounts, but 
the slopes are essentially unchanged. This is valid for both positive and negative 
values of q. Similar conclusions are obtained for other values of q, as well as for the 
other flows studied. We conclude that the results are robust with respect to the 
method of differentiation. 

Note added in proof: A few additional remarks concerning the computation of the 
f ( a )  curve (figure 33) may be useful. One can take advantage of the thermodynamic 
analogy of multifractals and partially account for finite-size effects by employing 
‘Boltzmann weights’ in computing f and a. This so-called canonical method 
(Chhabra & Jensen 1989) yields results in agreement with figure 33. One can also 
compute the f ( a )  curve by the multiplier distributions in the inertial range; see 
equations (2.31)-(2.33). In  particular, this method has been shown by Chhabra & 
Sreenivasan (1990) to be capable of yielding negative dimensions reliably. The results 
from the multiplier method are also consistent with figure 33. The one unresolved 
issue is the relation between the present D, exponents for q < 1 and those of the 
inertial range quantity, namely the scale-to-scale energy flux. 
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